skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Formation of Complex Organic Molecules in Hot Molecular Cores through Nondiffusive Grain-surface and Ice-mantle Chemistry
Abstract A new, more comprehensive model of gas–grain chemistry in hot molecular cores is presented, in which nondiffusive reaction processes on dust-grain surfaces and in ice mantles are implemented alongside traditional diffusive surface/bulk-ice chemistry. We build on our nondiffusive treatments used for chemistry in cold sources, adopting a standard collapse/warm-up physical model for hot cores. A number of other new chemical model inputs and treatments are also explored in depth, culminating in a final model that demonstrates excellent agreement with gas-phase observational abundances for many molecules, including some (e.g., methoxymethanol) that could not be reproduced by conventional diffusive mechanisms. The observed ratios of structural isomers methyl formate, glycolaldehyde, and acetic acid are well reproduced by the models. The main temperature regimes in which various complex organic molecules (COMs) are formed are identified. Nondiffusive chemistry advances the production of many COMs to much earlier times and lower temperatures than in previous model implementations. Those species may form either as by-products of simple-ice production, or via early photochemistry within the ices while external UV photons can still penetrate. Cosmic ray-induced photochemistry is less important than in past models, although it affects some species strongly over long timescales. Another production regime occurs during the high-temperature desorption of solid water, whereby radicals trapped in the ice are released onto the grain/ice surface, where they rapidly react. Several recently proposed gas-phase COM-production mechanisms are also introduced, but they rarely dominate. New surface/ice reactions involving CH and CH2are found to contribute substantially to the formation of certain COMs.  more » « less
Award ID(s):
1906489
PAR ID:
10363016
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
259
Issue:
1
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 1
Size(s):
Article No. 1
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The detection of many complex organic molecules (COMs) in interstellar space has sparked the study of their origins. While the formation of COMs detected in hot cores is attributed to photochemistry on warming grain surfaces followed by recombination of radicals and desorption, the formation routes in colder regions are still a debated issue with a number of theories such as cosmic ray bombardment on interstellar ice mantles or non-diffusive surface chemistry. Here, we present another method with reactions involving metastable atomic oxygen in the O(1D) state, which is initially produced by photodissociation of oxygen-containing species in interstellar ices. As a first example, we study the reactions of metastable oxygen atoms and methane in ices to form both formaldehyde and methanol. The reaction is studied incorporating two different surface processes: diffusive and non-diffusive chemistry. The formation of methanol and formaldehyde via metastable oxygen atoms is compared with well-known formation routes of both to understand the O(1D) contributions at different temperatures. 
    more » « less
  2. Abstract We present Atacama Large Millimeter/submillimeter Array Band 3 data toward five massive young stellar objects (MYSOs), and investigate relationships between unsaturated carbon-chain species and saturated complex organic molecules (COMs). An HC 5 N ( J = 35–34) line has been detected from three MYSOs, where nitrogen (N)-bearing COMs (CH 2 CHCN and CH 3 CH 2 CN) have been detected. The HC 5 N spatial distributions show compact features and match with a methanol (CH 3 OH) line with an upper-state energy around 300 K, which should trace hot cores. The hot regions are more extended around the MYSOs where N-bearing COMs and HC 5 N have been detected compared to two MYSOs without these molecular lines, while there are no clear differences in the bolometric luminosity and temperature. We run chemical simulations of hot-core models with a warm-up stage, and compare with the observational results. The observed abundances of HC 5 N and COMs show good agreements with the model at the hot-core stage with temperatures above 160 K. These results indicate that carbon-chain chemistry around the MYSOs cannot be reproduced by warm carbon-chain chemistry, and a new type of carbon-chain chemistry occurs in hot regions around MYSOs. 
    more » « less
  3. Context.Acetone (CH3COCH3) is one of the most abundant three-carbon oxygen-bearing complex organic molecules (O-COMs) that have been detected in space. The previous detections were made in the gas phase toward star-forming regions that are chemically rich, mostly in protostellar systems. Recently, acetone ice has also been reported as (tentatively) detected toward two low-mass protostars, allowing comparisons in acetone abundances between gas and ice. The detection of acetone ice warrants a more systematic study of its gaseous abundances which is currently lacking. Aims.We aim to measure the gas-phase abundances of acetone in a large sample obtained from the CoCCoA program, and investigate the chemical evolution of acetone from ice to gas in protostellar systems. Methods.We fit the ALMA spectra to determine the column density, excitation temperature, and line width of acetone in 12 high-mass protostars as part of CoCCoA. We also constrained the physical properties of propanal (C2H5CHO), ketene (CH2CO), and propyne (CH3CCH), which might be chemically linked with acetone. We discuss the possible formation pathways of acetone by making comparisons in its abundances between gas and ice and between observations and simulations. Results.We firmly detect acetone, ketene, and propyne in the 12 high-mass protostars. The observed gas-phase abundances of acetone are surprisingly high compared to those of two-carbon O-COMs (especially aldehydes). Propanal is considered as tentatively detected due to lack of unblended lines covered in our data. The derived physical properties suggest that acetone, propanal, and ketene have the same origin from hot cores as other O-COMs, while propyne tends to trace the more extended outflows. The acetone-to-methanol ratios are higher in the solid phase than in the gas phase by one order of magnitude, which suggests gas-phase reprocessing after sublimation. There are several suggested formation pathways of acetone (in both ice and gas) from acetaldehyde, ketene, and propylene. The observed ratios between acetone and these three species are rather constant across the sample, and can be well reproduced by astrochemical simulations. Conclusions.On the one hand, the observed high gas-phase abundances of acetone along with dimethyl ether (CH3OCH3) and methyl formate (CH3OCHO) may hint at specific chemical mechanisms that favor the production of ethers, esters, and ketones over alcohols and aldehydes. On the other hand, the overall low gas-phase abundances of aldehydes may result from destruction pathways that are overlooked or underestimated in previous studies. The discussed formation pathways of acetone from acetaldehyde, ketene, and propylene seem plausible from observations and simulations, but more investigations are needed to draw more solid conclusions. We emphasize the importance of studying acetone, which is an abundant COM that deserves more attention in the future. 
    more » « less
  4. Context.Recent JWST observations have measured the ice chemical composition towards two highly extinguished background stars, NIR38 and J110621, in the Chamaeleon I molecular cloud. The observed excess of extinction on the long-wavelength side of the H2O ice band at 3 μm has been attributed to a mixture of CH3OH with ammonia hydrates NH3·H2O), which suggests that CH3OH ice in this cloud could have formed in a water-rich environment with little CO depletion. Laboratory experiments and quantum chemical calculations suggest that CH3OH could form via the grain surface reactions CH3+ OH and/or C + H2O in water-rich ices. However, no dedicated chemical modelling has been carried out thus far to test their efficiency. In addition, it remains unexplored how the efficiencies of the proposed mechanisms depend on the astrochemical code employed. Aims.We modelled the ice chemistry in the Chamaeleon I cloud to establish the dominant formation processes of CH3OH, CO, CO2, and of the hydrides CH4and NH3(in addition to H2O). By using a set of state-of-the-art astrochemical codes (MAGICKAL, MONACO, Nautilus, UCLCHEM, and KMC simulations), we can test the effects of the different code architectures (rate equation vs. stochastic codes) and of the assumed ice chemistry (diffusive vs. non-diffusive). Methods.We consider a grid of models with different gas densities, dust temperatures, visual extinctions, and cloud-collapse length scales. In addition to the successive hydrogenation of CO, the codes’ chemical networks have been augmented to include the alternative processes for CH3OH ice formation in water-rich environments (i.e. the reactions CH3+ OH → CH3OH and C + H2O → H2CO). Results.Our models show that the JWST ice observations are better reproduced for gas densities ≥105cm−3and collapse timescales ≥105yr. CH3OH ice formation occurs predominantly (>99%) via CO hydrogenation. The contribution of reactions CH3+ OH and C + H2O is negligible. The CO2ice may form either via CO + OH or CO + O depending on the code. However, KMC simulations reveal that both mechanisms are efficient despite the low rate of the CO + O surface reaction. CH4is largely underproduced for all codes except for UCLCHEM, for which a higher amount of atomic C is available during the translucent cloud phase of the models. Large differences in the predicted abundances are found at very low dust temperatures (Tdust<12 K) between diffusive and non-diffusive chemistry codes. This is due to the fact that non-diffusive chemistry takes over diffusive chemistry at such low Tdust. This could explain the rather constant ice chemical composition found in Chamaeleon I and other dense cores despite the different visual extinctions probed. 
    more » « less
  5. null (Ed.)
    ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b. 
    more » « less