Abstract The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides continuous global maps of Birkeland currents, using magnetic field perturbations (dB) obtained by calibrating and detrending data from engineering magnetometers on the 66 polar‐orbiting Iridium satellites in the communications constellation. Here, we provide an assessment of AMPERE dBaccuracy, as compared with magnetic field observations from the Swarm satellite mission. The CHAOS v8.1 model (Finlay et al., 2020,https://doi.org/10.1186/s40623‐020‐01252‐9) was used to remove the main field and other non‐ionospheric contributions from both data sets. In a nearest‐neighbor comparison covering August 2022, AMPERE's calibrated and detrended dBdata from the Iridium NEXT satellites are found to have root‐mean‐square deviations of 31 and 33 nT (for dBθand dBφ, respectively) as compared with data from Swarm, while the biases are −7 and −2 nT. For the same interval, AMPERE's fitted maps have root‐mean‐square errors of <40 nT, rising to 109–185 nT in active conditions (defined as Swarm dB > 250 nT). However, there is evidence that small scale (<400‐km along Swarm track direction) dBstructures are not fully resolved. Overall, we find that the AMPERE dBdata and fitted products are unbiased and are typically in excellent agreement with the Swarm data.
more »
« less
Investigation of geomagnetic reference models based on the Iridium$$^{\circledR }$$ constellation
Abstract The World Magnetic Model (WMM) is a geomagnetic main field model that is widely used for navigation by governments, industry and the general public. In recent years, the model has been derived using high accuracy magnetometer data from the Swarm mission. This study explores the possibility of developing future WMMs in the post-Swarm era using data from the Iridium satellite constellation. Iridium magnetometers are primarily used for attitude control, so they are not designed to produce the same level of accuracy as magnetic data from scientific missions. Iridium magnetometer errors range from 30 nT quantization to hundreds of nT errors due to spacecraft contamination and calibration uncertainty, whereas Swarm measurements are accurate to about 1 nT. The calibration uncertainty in the Iridium measurements is identified as a major error source, and a method is developed to calibrate the spacecraft measurements using data from a subset of the INTERMAGNET observatory network producing quasi-definitive data on a regular basis. After calibration, the Iridium data produced main field models with approximately 20 nT average error and 40 nT maximum error as compared to the CHAOS-7.2 model. For many scientific and precision navigation applications, highly accurate Swarm-like measurements are still necessary, however, the Iridium-based models were shown to meet the WMM error tolerances, indicating that Iridium is a viable data source for future WMMs. Graphical Abstract
more »
« less
- Award ID(s):
- 2002574
- PAR ID:
- 10363195
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Earth, Planets and Space
- Volume:
- 74
- Issue:
- 1
- ISSN:
- 1880-5981
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As part of Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project, a low-cost, commercial off-the-shelf magnetometer has been developed to provide quantitative and qualitative measurements of the geospace environment from the ground for both scientific and operational purposes at a cost that will allow for crowd-sourced data contributions. The PSWS magnetometers employ a magneto-inductive sensor technology to record three-axis magnetic field variations with a field resolution of ~3 nT at a 1 Hz sample rate. The measurement range of the sensor is +/-1.1e6 nT) and is valid over a temperature range of −40 °C to +85 °C. Data from the PSWS network will combine these magnetometer measurements with high frequency (HF, 3–30 MHz) radio observations to monitor large-scale current systems and ionospheric disturbances due to drivers from both space and the atmosphere. A densely-spaced magnetometer array, once established, will demonstrate their space weather monitoring capability to an unprecedented spatial extent. Magnetic field data obtained by the magnetometers installed at various locations in the US are presented and compared with the existing magnetometers nearby, demonstrating that the performance is very adequate for scientific investigations.more » « less
-
This paper presents an extension to visual inertial odometry (VIO) by introducing tightly-coupled fusion of magnetometer measurements. A sliding window of keyframes is optimized by minimizing re-projection errors, relative inertial errors, and relative magnetometer orientation errors. The results of IMU orientation propagation are used to efficiently transform magnetometer measurements between frames producing relative orientation constraints between consecutive frames. The soft and hard iron effects are calibrated using an ellipsoid fitting algorithm. The introduction of magnetometer data results in significant reductions in the orientation error and also in recovery of the true yaw orientation with respect to the magnetic north. The proposed framework operates in all environments with slow-varying magnetic fields, mainly outdoors and underwater. We have focused our work on the underwater domain, especially in underwater caves, as the narrow passage and turbulent flow make it difficult to perform loop closures and reset the localization drift. The underwater caves present challenges to VIO due to the absence of ambient light and the confined nature of the environment, while also being a crucial source of fresh water and providing valuable historical records. Experimental results from underwater caves demonstrate the improvements in accuracy and robustness introduced by the proposed VIO extension.more » « less
-
Abstract Magnetometers are essential instruments in space physics, but their measurements are often contaminated by various external interference sources. In this work, we present a comprehensive review of existing magnetometer interference removal methods and introduce MAGPRIME (MAGnetic signal PRocessing, Interference Mitigation, and Enhancement), an open‐source Python library featuring a collection of state‐of‐the‐art interference removal algorithms. MAGPRIME streamlines the process of interference removal in magnetic field data by providing researchers with an integrated, easy‐to‐use platform. We detail the design, structure, and functionality of the library, as well as its potential to facilitate future research by enabling rapid testing and customization of interference removal methods. Using the MAGPRIME Library, we present two Monte Carlo benchmark results to compare the efficacy of interference removal algorithms in different magnetometer configurations. In Benchmark A, the Underdetermined Blind Source Separation (UBSS) and traditional gradiometry algorithms surpass the uncleaned boom‐mounted magnetometers, achieving improved correlation and reducing median error in each simulation. Benchmark B tests the efficacy of the suite of MAGPRIME algorithms in a boomless magnetometer configuration. In this configuration, the UBSS algorithm proves to significantly reduce median error, along with improvements in median correlation and signal to noise ratio. This study highlights MAGPRIME's potential in enhancing magnetic field measurement accuracy in various spacecraft designs, from traditional gradiometry setups to compact, cost‐effective alternatives like bus‐mounted CubeSat magnetometers, thus establishing it as a valuable tool for researchers and engineers in space exploration and magnetism studies.more » « less
-
Abstract Characterization of Earth's magnetic field is key to understanding dynamics of the core. We assess whether Iridium Communications magnetometer data can be used for this purpose since. The 66 Iridium satellites are in 86° inclination, 780 km altitude, circular orbits, with 11 satellites in each of six orbit planes. In one day the constellation returns 300,000 measurements spanning the globe with <2° spacing. We used data from January 2010 through November 2015, and compared against International Geomagnetic Reference Field (IGRF‐11) to inter‐calibrate all data to the same model. Geomagnetically quiet 24‐h intervals were selected using the total Birkeland current, auroral electrojet, and ring current indices. Thez‐scores for these quantities were combined and the quietest 16 intervals from each quarter selected for analysis. Residuals between the data and IGRF‐11 yield consistent patterns that evolve gradually from 2010 to 2015. Residuals for each day were binned in 9° latitude by 9° longitude and the distributions about the mean in each bin are Gaussian with 1‐sigma standard errors of ∼3 nT. Spherical harmonic coefficients for each quiet day were computed and time series of the coefficients used to identify artifacts at the orbit precession (8 months) and seasonal (12 months) periods and their harmonics which were then removed by notch filtering. This analysis yields time series at 800 virtual geomagnetic observatories each providing a global field map using a single day of data. The results and CHAOS 7.4 generally agree, but systematic differences larger than the statistical uncertainties are present that warrant further exploration.more » « less
An official website of the United States government
