skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Order-of-magnitude beam current improvement in compact cyclotrons
Abstract There is great need for high intensity proton beams from compact particle accelerators in particle physics, medical isotope production, and materials- and energy-research. To address this need, we present, for the first time, a design for a compact isochronous cyclotron that will be able to deliver 10 mA of 60 MeV protons—an order of magnitude higher than on-market compact cyclotrons and a factor four higher than research machines. A key breakthrough is that vortex motion is incorporated in the design of a cyclotron, leading to clean extraction. Beam losses on the septa of the electrostatic extraction channels stay below 120 W (40% below the required safety limit), while maintaining good beam quality. We present a set of highly accurate particle-in-cell simulations, and an uncertainty quantification of select beam input parameters using machine learning, showing the robustness of the design. This design can be utilized for beams for experiments in particle and nuclear physics, materials science and medical physics as well as for industrial applications.  more » « less
Award ID(s):
1912764
PAR ID:
10363284
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
24
Issue:
2
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 023038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Perfect vortex (PV) beams possessing annular intensity profiles independent of topological charges promise significant advances in particle manipulation, fiber communication, and quantum optics. The PV beam is typically generated from the Fourier transformation of the Bessel–Gauss beam. However, the conventional method to produce PV beams requires a series of bulky optical components, which greatly increases the system complexity and also hinders the photonic device integration. Here, plasmonic metasurfaces made of rectangular‐hole nanoantennas as integrated beam converters are designed and demonstrated to generate focused 3D PV beams in a broad wavelength range, by combining the phase profiles of axicon, spiral phase plate, and Fourier transform lens simultaneously based on the Pancharatnam–Berry phase. It is demonstrated that the PV beam structures can be adjusted by varying several control parameters in the metasurface design. Moreover, multiple PV beams with arbitrary arrangement and topological charges are also produced. These results have the promising potential for enabling new types of compact optical devices for tailoring complex light beams and advancing metasurface‐based functional integrated photonic chips. 
    more » « less
  2. Abstract Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities. 
    more » « less
  3. Kabashin, Andrei V.; Farsari, Maria; Mahjouri-Samani, Masoud (Ed.)
    Photothermal microscopy is a powerful method for investigating biological systems and solid state materials. Using a modulated pump to excite the sample, a continuous probe beam monitors the change in the refractive index of the sample due to the modulated heating. These experiments are typically performed at high frequencies to reduce the 1/f noise, achieving a higher signal to noise ratio. In this paper, we explore how the resolution and sensitivity of the photothermal experiments change when the modulation frequency is brought down below 100kHz. In the instance that the pump and probe are cofocused at the sample, the resolution is determined by the size of the pump beam. On the other hand, when a widefield pump is used, significant broadening occurs for frequencies under 20kHz. This broadening is attributed to thermal diffusion. However, the amount of broadening is less than that expected from the thermal diffusion length, which is about 1.7μm at 10kHz for nanoparticles in glycerol. We also explore the situation where the point spread functions of the pump and probe beams are smaller than the particle size as well as how the penetration depth depends on the properties of the pump and probe beams. 
    more » « less
  4. We present a quantum optics-based detection method for determining the position and current of an electron beam. As electrons pass through a dilute vapor of rubidium atoms, their magnetic field perturbs the atomic spin's quantum state and causes polarization rotation of a laser resonant with an optical transition of the atoms. By measuring the polarization rotation angle across the laser beam, we recreate a 2D projection of the magnetic field and use it to determine the e-beam position, size, and total current. We tested this method for an e-beam with currents ranging from 30 to 110 μA. Our approach is insensitive to electron kinetic energy, and we confirmed that experimentally between 10 and 20 keV. This technique offers a unique platform for noninvasive characterization of charged particle beams used in accelerators for particle and nuclear physics research. 
    more » « less
  5. Abstract Intense upward electron beams were measured by the Juno JADE instrument in the northern hemisphere, low‐latitude auroral zone source region. In this study we report on how these electron beams interact with plasma near and within the Jovian hectometric (HOM) emission (1 MHz 5 MHz) source region. Within the source region large upward loss cones are observed in the northern polar region at radial distances of 2Rj, magnetic latitude of . Intense, narrow electron beams ( 3 keV) are then observed, but within one second wave‐particle scattering is observed, filling the loss cone to energies 50 keV. These energies persist for several seconds before fading, leaving an empty loss cone again. The loss cone provides a free‐energy source for HOM emission resulting from the cyclotron maser instability. We use quasilinear analysis to examine the generation of HOM and the dynamics of wave‐particle interaction of the electron beams with HOM, and the generation via Landau interaction of whistler mode emission. The dynamic spectrum of the HOM emission generated by the loss‐cone electrons as well as that of the low‐frequency whistler‐mode waves generated by the up‐going electron beam can be constructed by quasilinear theory, which compare well with observation. The saturated state of the energetic electron velocity distribution function constructed via quasilinear theory also compare reasonably with observation. 
    more » « less