skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An evaluation of on-demand transit user and interested-non-user characteristics and the factors that attract the transit-curious to using on-demand transit
With the advent of new mobility modes and technologies, we have seen meaningful changes in travel behavior. One such new mobility mode is on-demand transit. The Metropolitan Atlanta Rapid Transit Authority deployed its own on-demand transit system, dubbed MARTA Reach, in March of 2022. This paper provides an evaluation of the characteristics of two groups of people related to MARTA Reach: those who were interested in it and used it and those who were interested in it but did not use it. In addition, this paper explores the factors that influence membership in each of those two groups using a binary logit model, revealing the underlying characteristics that are linked with the decision to use or not use the service given prior interest. The findings show that simply providing more service has the strongest effect on adoption. Among 561 survey respondents, 426 expressed that the service area for MARTA Reach was too limited for their needs. Modeling results support this finding, in addition to the following strong predictors of on-demand transit adoption: 1) being a frequent transit user, 2) being satisfied with the current state of fixed-route transit service, 3) being part of a low-income household, 4) living within an on-demand transit service area, and 5) being younger. Understanding these group characteristics and underlying factors can help guide future efforts to provide on-demand transit service, such as by targeting the market segments that share features with the underlying factors that are shown herein to be linked with on-demand transit adoption.  more » « less
Award ID(s):
2133342
PAR ID:
10564568
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Travel Behaviour and Society
Volume:
37
Issue:
C
ISSN:
2214-367X
Page Range / eLocation ID:
100868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During recent years there have been several efforts from city and transportation planners, as well as, port authorities, to design multimodal transport systems, covering the needs of the population to be served. However, before designing such a system, the first step is to understand the current gaps. Does the current system meet the transit demand of the geographic area covered? If not, where are the gaps between supply and demand? To answer this question, the notion of transit desert has been introduced. A transit desert is an area where the supply of transit service does not meet the demand for it. While there is little ambiguity on what constitutes transit demand, things are more vague when it comes to transit supply. Existing efforts often define transit supply using volume metrics (e.g., number of bus stops within a pre-defined distance). However, this does not necessarily capture the quality of the transit service. In this study, we introduce a network-based transit desert index (which we call TDI) that captures not only the quantity of transit supply in an area, but also the connectivity that the transit system provides for an area within the region of interest. In particular, we define a network between areas based on the transit travel time, distance, and overall quantity of connections. We use these measures to examine two notions of transit quality: connectivity and availability. To quantify the connectivity of an area i we utilize the change observed in the second smallest eigenvalue of the Laplacian when we remove node i from the network. To quantify availability of an area i, we examine the number of routes which pass through this area as given by an underlying transit network. We further apply and showcase our approach with data from Allegheny County, Pennsylvania, USA. Finally, we discuss current limitations of TDI and how we can tackle them as part of our future research. 
    more » « less
  2. On-demand transit is attracting the attention of transportation researchers and transit agencies for its potential to solve the first-mile/last-mile problem. Although on-demand transit has been proved to increase transit accessibility significantly, its impact on transit equity and equality has not been addressed. In this study we examined the potential impact of the On-Demand Multimodal Transit System (ODMTS) in Atlanta (GA), on both transit equity and equality compared with the existing transit system. The results showed that ODMTS could have a positive impact on transit equality by reducing the disparity in transit service between neighborhoods close to and far from the existing transit network; however, it may not improve transit equity. 
    more » « less
  3. COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit. 
    more » « less
  4. This paper studies how to integrate rider mode preferences into the design of on-demand multimodal transit systems (ODMTSs). It is motivated by a common worry in transit agencies that an ODMTS may be poorly designed if the latent demand, that is, new riders adopting the system, is not captured. This paper proposes a bilevel optimization model to address this challenge, in which the leader problem determines the ODMTS design, and the follower problems identify the most cost efficient and convenient route for riders under the chosen design. The leader model contains a choice model for every potential rider that determines whether the rider adopts the ODMTS given her proposed route. To solve the bilevel optimization model, the paper proposes an exact decomposition method that includes Benders optimal cuts and no-good cuts to ensure the consistency of the rider choices in the leader and follower problems. Moreover, to improve computational efficiency, the paper proposes upper and lower bounds on trip durations for the follower problems, valid inequalities that strengthen the no-good cuts, and approaches to reduce the problem size with problem-specific preprocessing techniques. The proposed method is validated using an extensive computational study on a real data set from the Ann Arbor Area Transportation Authority, the transit agency for the broader Ann Arbor and Ypsilanti region in Michigan. The study considers the impact of a number of factors, including the price of on-demand shuttles, the number of hubs, and access to transit systems criteria. The designed ODMTSs feature high adoption rates and significantly shorter trip durations compared with the existing transit system and highlight the benefits of ensuring access for low-income riders. Finally, the computational study demonstrates the efficiency of the decomposition method for the case study and the benefits of computational enhancements that improve the baseline method by several orders of magnitude. Funding: This research was partly supported by National Science Foundation [Leap HI Proposal NSF-1854684] and the Department of Energy [Research Award 7F-30154]. 
    more » « less
  5. Hebrard E., Musliu N. (Ed.)
    This study explores the design of an On-Demand Multimodal Transit System (ODMTS) that includes segmented mode switching models that decide whether potential riders adopt the new ODMTS or stay with their personal vehicles. It is motivated by the desire of transit agencies to design their network by taking into account both existing and latent demand, as quality of service improves. The paper presents a bilevel optimization where the leader problem designs the network and each rider has a follower problem to decide her best route through the ODMTS. The bilevel model is solved by a decomposition algorithm that combines traditional Benders cuts with combinatorial cuts to ensure the consistency of mode choices by the leader and follower problems. The approach is evaluated on a case study using historical data from Ann Arbor, Michigan, and a user choice model based on the income levels of the potential transit riders. 
    more » « less