skip to main content


Title: Hydrologic Model Sensitivity to Temporal Aggregation of Meteorological Forcing Data: A Case Study for the Contiguous United States
Abstract

Surface meteorological analyses are an essential input (termed “forcing”) for hydrologic modeling. This study investigated the sensitivity of different hydrologic model configurations to temporal variations of seven forcing variables (precipitation rate, air temperature, longwave radiation, specific humidity, shortwave radiation, wind speed, and air pressure). Specifically, the effects of temporally aggregating hourly forcings to hourly daily average forcings were examined. The analysis was based on 14 hydrological outputs from the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model for the 671 Catchment Attributes and Meteorology for Large-Sample Studies (CAMELS) basins across the contiguous United States (CONUS). Results demonstrated that the hydrologic model sensitivity to temporally aggregating the forcing inputs varies across model output variables and model locations. We used Latin hypercube sampling to sample model parameters from eight combinations of three influential model physics choices (three model decisions with two options for each decision, i.e., eight model configurations). Results showed that the choice of model physics can change the relative influence of forcing on model outputs and the forcing importance may not be dependent on the parameter space. This allows for model output sensitivity to forcing aggregation to be tested prior to parameter calibration. More generally, this work provides a comprehensive analysis of the dependence of modeled outcomes on input forcing behavior, providing insight into the regional variability of forcing variable dominance on modeled outputs across CONUS.

 
more » « less
Award ID(s):
1664061 1664018
NSF-PAR ID:
10363551
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
23
Issue:
2
ISSN:
1525-755X
Page Range / eLocation ID:
p. 167-183
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Assessing impacts of climate change on hydrologic systemsis critical for developing adaptation and mitigation strategies for waterresource management, risk control, and ecosystem conservation practices. Suchassessments are commonly accomplished using outputs from a hydrologic modelforced with future precipitation and temperature projections. The algorithmsused for the hydrologic model components (e.g., runoff generation) canintroduce significant uncertainties into the simulated hydrologic variables.Here, a modeling framework was developed that integrates multiple runoffgeneration algorithms with a routing model and associated parameteroptimizations. This framework is able to identify uncertainties from bothhydrologic model components and climate forcings as well as associatedparameterization. Three fundamentally different runoff generationapproaches, runoff coefficient method (RCM, conceptual), variableinfiltration capacity (VIC, physically based, infiltration excess), andsimple-TOPMODEL (STP, physically based, saturation excess), were coupledwith the Hillslope River Routing model to simulate surface/subsurface runoffand streamflow. A case study conducted in Santa Barbara County, California,reveals increased surface runoff in February and March but decreasedrunoff in other months, a delayed (3 d, median) and shortened (6 d,median) wet season, and increased daily discharge especially for theextremes (e.g., 100-year flood discharge, Q100). The Bayesian modelaveraging analysis indicates that the probability of such an increase can be up to85 %. For projected changes in runoff and discharge, general circulationmodels (GCMs) and emission scenarios are two major uncertainty sources,accounting for about half of the total uncertainty. For the changes inseasonality, GCMs and hydrologic models are two major uncertaintycontributors (∼35 %). In contrast, the contribution ofhydrologic model parameters to the total uncertainty of changes in thesehydrologic variables is relatively small (<6 %), limiting theimpacts of hydrologic model parameter equifinality in climate change impactanalysis. This study provides useful information for practices associatedwith water resources, risk control, and ecosystem conservation and forstudies related to hydrologic model evaluation and climate change impactanalysis for the study region as well as other Mediterranean regions. 
    more » « less
  2. Abstract. Lakes in the Arctic are important reservoirs of heat withmuch lower albedo in summer and greater absorption of solar radiation thansurrounding tundra vegetation. In the winter, lakes that do not freeze totheir bed have a mean annual bed temperature >0 ∘C inan otherwise frozen landscape. Under climate warming scenarios, we expectArctic lakes to accelerate thawing of underlying permafrost due to warmingwater temperatures in the summer and winter. Previous studies of Arcticlakes have focused on ice cover and thickness, the ice decay process,catchment hydrology, lake water balance, and eddy covariance measurements,but little work has been done in the Arctic to model lake heat balance. Weapplied the LAKE 2.0 model to simulate water temperatures in three Arcticlakes in northern Alaska over several years and tested the sensitivity ofthe model to several perturbations of input meteorological variables(precipitation, shortwave radiation, and air temperature) and several modelparameters (water vertical resolution, sediment vertical resolution, depthof soil column, and temporal resolution). The LAKE 2.0 model is aone-dimensional model that explicitly solves vertical profiles of waterstate variables on a grid. We used a combination of meteorological data fromlocal and remote weather stations, as well as data derived from remotesensing, to drive the model. We validated modeled water temperatures withdata of observed lake water temperatures at several depths over severalyears for each lake. Our validation of the LAKE 2.0 model is a necessarystep toward modeling changes in Arctic lake ice regimes, lake heat balance,and thermal interactions with permafrost. The sensitivity analysis shows usthat lake water temperature is not highly sensitive to small changes in airtemperature or precipitation, while changes in shortwave radiation and largechanges in precipitation produced larger effects. Snow depth and lake icestrongly affect water temperatures during the frozen season, which dominatesthe annual thermal regime of Arctic lakes. These findings suggest thatreductions in lake ice thickness and duration could lead to more heatstorage by lakes and enhanced permafrost degradation. 
    more » « less
  3. Transient growth and resolvent analyses are routinely used to assess nonasymptotic properties of fluid flows. In particular, resolvent analysis can be interpreted as a special case of viewing flow dynamics as an open system in which free-stream turbulence, surface roughness, and other irregularities provide sources of input forcing. We offer a comprehensive summary of the tools that can be employed to probe the dynamics of fluctuations around a laminar or turbulent base flow in the presence of such stochastic or deterministic input forcing and describe how input–output techniques enhance resolvent analysis. Specifically, physical insights that may remain hidden in the resolvent analysis are gained by detailed examination of input–output responses between spatially localized body forces and selected linear combinations of state variables. This differentiating feature plays a key role in quantifying the importance of different mechanisms for bypass transition in wall-bounded shear flows and in explaining how turbulent jets generate noise. We highlight the utility of a stochastic framework, with white or colored inputs, in addressing a variety of open challenges including transition in complex fluids, flow control, and physics-aware data-driven turbulence modeling. Applications with temporally or spatially periodic base flows are discussed and future research directions are outlined. 
    more » « less
  4. Abstract

    Predictions of hydrologic variables across the entire water cycle have significant value for water resources management as well as downstream applications such as ecosystem and water quality modeling. Recently, purely data‐driven deep learning models like long short‐term memory (LSTM) showed seemingly insurmountable performance in modeling rainfall runoff and other geoscientific variables, yet they cannot predict untrained physical variables and remain challenging to interpret. Here, we show that differentiable, learnable, process‐based models (calledδmodels here) can approach the performance level of LSTM for the intensively observed variable (streamflow) with regionalized parameterization. We use a simple hydrologic model HBV as the backbone and use embedded neural networks, which can only be trained in a differentiable programming framework, to parameterize, enhance, or replace the process‐based model's modules. Without using an ensemble or post‐processor,δmodels can obtain a median Nash‐Sutcliffe efficiency of 0.732 for 671 basins across the USA for the Daymet forcing data set, compared to 0.748 from a state‐of‐the‐art LSTM model with the same setup. For another forcing data set, the difference is even smaller: 0.715 versus 0.722. Meanwhile, the resulting learnable process‐based models can output a full set of untrained variables, for example, soil and groundwater storage, snowpack, evapotranspiration, and baseflow, and can later be constrained by their observations. Both simulated evapotranspiration and fraction of discharge from baseflow agreed decently with alternative estimates. The general framework can work with models with various process complexity and opens up the path for learning physics from big data.

     
    more » « less
  5. We present a computational framework for dimension reduction and surrogate modeling to accelerate uncertainty quantification in computationally intensive models with high-dimensional inputs and function-valued outputs. Our driving application is multiphase flow in saturated-unsaturated porous media in the context of radioactive waste storage. For fast input dimension reduction, we utilize an approximate global sensitivity measure, for function-valued outputs, motivated by ideas from the active subspace methods. The proposed approach does not require expensive gradient computations. We generate an efficient surrogate model by combining a truncated Karhunen-Loeve (KL) expansion of the output with polynomial chaos expansions, for the output KL modes, constructed in the reduced parameter space. We demonstrate the effectiveness of the proposed surrogate modeling approach with a comprehensive set of numerical experiments, where we consider a number of function-valued (temporally or spatially distributed) QoIs. 
    more » « less