Abstract Porous noble metal nanoparticles have received particular attention recently for their unique optical, thermal, and catalytic functions in biomedicine. However, limited progress has been made to synthesize such porous metallic nanostructures with large mesopores (≥25 nm). Here, a green yet facile synthesis strategy using biocompatible liposomes as templates to mediate the formation of mesoporous metallic nanostructures in a controllable fashion is reported. Various monodispersed nanostructures with well‐defined mesoporous shape and large mesopores (≈ 40 nm) are successfully synthesized from mono‐ (Au, Pd, and Pt), bi‐ (AuPd, AuPt, AuRh, PtRh, and PdPt), and tri‐noble metals (AuPdRh, AuPtRh, and AuPdPt). Along with a successful demonstration of its effectiveness in synthesis of various mesoporous nanostructures, the possible mechanism of liposome‐guided formation of such nanostructures via time sectioning of the synthesis process (monitoring time‐resolved growth of mesoporous structures) and computational quantum molecular modeling (analyzing chemical interaction energy between metallic cations and liposomes at the enthalpy level) is also revealed. These mesoporous metallic nanostructures exhibit a strong photothermal effect in the near‐infrared region, effective catalytic activities in hydrogen peroxide decomposition reaction, and high drug loading capacity. Thus, the liposome‐templated method provides an inspiring and robust avenue to synthesize mesoporous noble metal‐based nanostructures for versatile biomedical applications.
more »
« less
Oriented Attachment: A Unique Mechanism for the Colloidal Synthesis of Metal Nanostructures
Abstract Rational synthesis of nanostructures with desired properties critically depends on our understanding of the growth mechanism. In addition to the traditional mechanism involving atomic addition, oriented attachment (OA) has received increasing attention in recent years. Employing nanocrystallites as building blocks, OA offers an important route to anisotropic growth, inclusion of defects, and formation of nanostructures with branched morphology. With a focus on metals, here we offer a brief account of recent progress in understanding OA and how it can be adapted for the colloidal synthesis of nanostructures with diverse compositions and morphologies. We start with a discussion on the current understanding of OA based on computational simulations and experimental studies, followed by typical examples of metal nanostructures produced through OA. Finally, we showcase the catalytic and plasmonic applications enabled by those nanostructures, together with perspectives on the challenges and opportunities.
more »
« less
- Award ID(s):
- 1804970
- PAR ID:
- 10363742
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemNanoMat
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2199-692X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rising atmospheric CO 2 reduces seawater pH causing ocean acidification (OA). Understanding how resilient marine organisms respond to OA may help predict how community dynamics will shift as CO 2 continues rising. The common slipper shell snail Crepidula fornicata is a marine gastropod native to eastern North America that has been a successful invader along the western European coastline and elsewhere. It has also been previously shown to be resilient to global change stressors. To examine the mechanisms underlying C. fornicata’s resilience to OA, we conducted two controlled laboratory experiments. First, we examined several phenotypes and genome-wide gene expression of C. fornicata in response to pH treatments (7.5, 7.6, and 8.0) throughout the larval stage and then tested how conditions experienced as larvae influenced juvenile stages (i.e., carry-over effects). Second, we examined genome-wide gene expression patterns of C. fornicata larvae in response to acute (4, 10, 24, and 48 h) pH treatment (7.5 and 8.0). Both C. fornicata larvae and juveniles exhibited resilience to OA and their gene expression responses highlight the role of transcriptome plasticity in this resilience. Larvae did not exhibit reduced growth under OA until they were at least 8 days old. These phenotypic effects were preceded by broad transcriptomic changes, which likely served as an acclimation mechanism for combating reduced pH conditions frequently experienced in littoral zones. Larvae reared in reduced pH conditions also took longer to become competent to metamorphose. In addition, while juvenile sizes at metamorphosis reflected larval rearing pH conditions, no carry-over effects on juvenile growth rates were observed. Transcriptomic analyses suggest increased metabolism under OA, which may indicate compensation in reduced pH environments. Transcriptomic analyses through time suggest that these energetic burdens experienced under OA eventually dissipate, allowing C. fornicata to reduce metabolic demands and acclimate to reduced pH. Carry-over effects from larval OA conditions were observed in juveniles; however, these effects were larger for more severe OA conditions and larvae reared in those conditions also demonstrated less transcriptome elasticity. This study highlights the importance of assessing the effects of OA across life history stages and demonstrates how transcriptomic plasticity may allow highly resilient organisms, like C. fornicata , to acclimate to reduced pH environments.more » « less
-
Abstract Noble‐metal nanostructures have emerged as a category of efficient and versatile peroxidase mimics in recent years. Enhancing their peroxidase‐like activities is essential to the realization of certain applications. In this review, we focus on how to engineer noble‐metal nanostructures with enhanced peroxidase‐like activities. The article is organized by introducing the impacts of surface capping ligands, particle size, shape, elemental composition, and internal structure as key parameters for the peroxidase‐like activity of noble‐metal nanostructures. Emphasis is given to the controlled synthesis of nanostructures and their peroxidase‐like catalytic efficiencies. At the end, we provide a perspective on future developments in the research relevant to peroxidase mimics of noble metals.more » « less
-
Chalcogenide perovskites have attracted increasing research attention in recent years due to their promise of unique optoelectronic properties combined with stability. However, the synthesis and processing of these materials has been constrained by the need for high temperatures and/or long reaction times. In this work, we address the open question of a low-temperature growth mechanism for BaZrS3. Ultimately, a liquid-assisted growth mechanism for BaZrS3 using molten BaS3 as a flux is demonstrated at temperatures ≥540 °C in as little as 5 min. The role of Zr-precursor reactivity and S(g.) on the growth mechanism and the formation of Ba3Zr2S7 is discussed, in addition to the purification of resulting products using a straightforward H2O wash. The extension of this growth mechanism to other Ba-based chalcogenides is shown, including BaHfS3, BaNbS3, and BaTiS3. In addition, an alternative vapor-transport growth mechanism is presented using S2Cl2 for the growth of BaZrS3 at temperatures as low as 500 °C in at least 3 h. These results demonstrate the feasibility of scalable processing for the formation of chalcogenide perovskite thin-films. (DOI: 10.1021/acs.chemmater.3c00494)more » « less
An official website of the United States government
