Microstructurally small fatigue‐crack growth in polycrystalline materials is highly three‐dimensional due to sensitivity to local microstructural features (e.g., grains). One requirement for modeling microstructurally sensitive crack propagation is establishing the criteria that govern crack evolution, including crack deflection. Here, a high‐fidelity finite‐element modeling framework is used to assess the performance and validity of various crack‐growth criteria, including slip‐based metrics (e.g., fatigue‐indicator parameters), as potential criteria for predicting three‐dimensional crack paths in polycrystalline materials. The modeling framework represents cracks as geometrically explicit discontinuities and involves voxel‐based remeshing, mesh‐gradation control, and a crystal‐plasticity constitutive model. The predictions are compared to experimental measurements of WE43 magnesium samples subject to fatigue loading, for which three‐dimensional grain structures and fatigue‐crack surfaces were measured post‐mortem using near‐field high‐energy x‐ray diffraction microscopy and x‐ray computed tomography. Findings from this work are expected to improve the predictive capabilities of simulations involving microstructurally small fatigue‐crack growth in polycrystalline materials.
This paper develops a Bayesian inference-based probabilistic crack nucleation model for the Ni-based superalloy René 88DT under fatigue loading. A data-driven, machine learning approach is developed, identifying underlying mechanisms driving crack nucleation. An experimental set of fatigue-loaded microstructures is characterized near crack nucleation sites using scanning electron microscopy and electron backscatter diffraction images for correlating the grain morphology and crystallography to the location of crack nucleation sites. A concurrent multiscale model, embedding experimental polycrystalline microstructural representative volume elements (RVEs) in a homogenized material, is developed for fatigue simulations. The RVE domain is modeled by a crystal plasticity finite element model. An anisotropic continuum plasticity model, obtained by homogenization of the crystal plasticity model, is used for the exterior domain. A Bayesian classification method is introduced to optimally select informative state variable predictors of crack nucleation. From this principal set of state variables, a simple scalar crack nucleation indicator is formulated.
more » « less- Award ID(s):
- 1825115
- NSF-PAR ID:
- 10363919
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Catastrophic accidents caused by fatigue failures often occur in engineering structures. Thus, a fundamental understanding of cyclic-deformation and fatigue-failure mechanisms is critical for the development of fatigue-resistant structural materials. Here we report a high-entropy alloy with enhanced fatigue life by ductile-transformable multicomponent B2 precipitates. Its cyclic-deformation mechanisms are revealed by real-time in-situ neutron diffraction, transmission-electron microscopy, crystal-plasticity modeling, and Monte-Carlo simulations. Multiple cyclic-deformation mechanisms, including dislocation slips, precipitation strengthening, deformation twinning, and reversible martensitic phase transformation, are observed in the studied high-entropy alloy. Its improved fatigue performance at low strain amplitudes, i.e., the high fatigue-crack-initiation resistance, is attributed to the high elasticity, plastic deformability, and martensitic transformation of the B2-strengthening phase. This study shows that fatigue-resistant alloys can be developed by incorporating strengthening ductile-transformable multicomponent intermetallic phases.
-
Abstract Nucleation of in‐service cracks leads to detrimental consequences for structural components of near‐
α titanium alloys subjected to fatigue loads. Experimental observations show that the fatigue initiation facets usually form in certain crystallographic orientation ranges of “hard” primaryα grains which differ between pure and dwell fatigue loads. In this manuscript, a comparative study has been performed using several fatigue indicator parameters (FIPs) to assess their ability to predict the location of fatigue crack nucleation in near‐α titanium alloy microstructures. All selected FIPs are implemented within the same polycrystalline plasticity finite element modeling framework to facilitate one‐to‐one comparisons. Comparison on predictability of critical initiation locations and their crystallographic orientations is studied for incorporated FIPs under pure and dwell fatigue. The critical locations predicted by some FIPs were found to be close to each other, and consistent with the crystallographic orientation ranges from fractography measurements, in addition to the range transition from pure to dwell fatigue loads. Critical locations from slip driven FIPs are obtained to be several grains away from that of the former ones and are inclined to capture orientations of slip traces from experiments. -
The effects of build orientation on the fatigue behavior of additively-manufactured Ti-6Al- 4V using a Laser-Based Power Bed Fusion (L-PBF) process is investigated. Ti-6Al-4V rods were manufactured in vertical, horizontal, and 45º angle orientations. The specimens were then machined and polished along the gage section in order to reduce the effects of surface roughness on fatigue behavior. Fully-reversed strain-controlled uniaxial fatigue tests were performed at various strain amplitudes with frequencies adjusted to maintain an average constant strain rate throughout testing. Results indicate slight variation in fatigue behavior of specimens fabricated in the different orientations investigated. Fractography was conducted using scanning electron microscopy after mechanical testing in order to investigate the crack initiation sites and determine the defect responsible for the failure. The experimental program utilized and results obtained will be presented and discussed.more » « less
-
The present work investigates fracture toughness, and actuation and mechanical fatigue crack growth responses of Ni50.3Ti29.7Hf20 HTSMAs across martensitic transformation with two different microstructures, one with H-phase nanoprecipitates and one without. H-phase precipitation is known to stabilize the actuation cycling response of NiTiHf HTSMAs and notably impacts transformation-induced plasticity. The fracture toughness tests performed reveal that precipitate-free NiTiHf has a higher fracture toughness and undergoes significantly more inelastic deformation than the one with the precipitates resulting in toughness enhancement, i.e., stable crack advance during fracture toughness experiments, which is not observed in the precipitated NiTiHf for the crack configuration and loading conditions tested. Furthermore, the precipitate free NiTiHf has higher actuation and mechanical fatigue crack growth resistance than the precipitation-hardened microstructure. This is attributed to plasticity buildup, which exacerbates the manifestation of retained martensite upon repeated transformations. The fatigue crack growth rates obtained from both actuation and mechanical fatigue experiments align to a single Paris Law Curve for the precipitation-hardened NiTiHf. This work aims to determine if unified Paris Law curves can be generated from mechanical and actuation fatigue experiments, irrespective of composition and microstructure, to estimate actuation fatigue crack growth rates, laborious and challenging to measure, from easier to detect mechanical fatigue crack growth rates.more » « less