skip to main content


Title: Cosmic-ray generated bubbles around their sources
ABSTRACT

Cosmic rays (CRs) are thought to escape their sources streaming along the local magnetic field lines. We show that this phenomenon generally leads to the excitation of both resonant and non-resonant streaming instabilities. The self-generated magnetic fluctuations induce particle diffusion in extended regions around the source, so that CRs build up a large pressure gradient. By means of two-dimensional (2D) and three-dimensional (3D) hybrid particle-in-cell simulations, we show that such a pressure gradient excavates a cavity around the source and leads to the formation of a cosmic ray dominated bubble, inside which diffusivity is strongly suppressed. Based on the trends extracted from self-consistent simulations, we estimate that, in the absence of severe damping of the self-generated magnetic fields, the bubble should keep expanding until pressure balance with the surrounding medium is reached, corresponding to a radius of ∼10–50 pc. The implications of the formation of these regions of low diffusivity for sources of Galactic CRs are discussed. Special care is devoted to estimating the self-generated diffusion coefficient and the grammage that CRs might accumulate in the bubbles before moving into the interstellar medium. Based on the results of 3D simulations, general considerations on the morphology of the γ-ray and synchrotron emission from these extended regions also are outlined.

 
more » « less
Award ID(s):
2009326 1909778 1714658 1936393
NSF-PAR ID:
10364004
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 233-244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cosmic rays leave their sources mainly along the local magnetic field present in the region around the source and in doing so they excite both resonant and non-resonant modes through streaming instabilities. The excitation of these modes leads to enhanced particle scattering and in turn to a large pressure gradient that causes the formation of expanding bubbles of gas and self-generated magnetic fields. By means of hybrid particle-in-cell simulations, we demonstrate that, by exciting this instability, cosmic rays excavate a cavity around their source where the diffusivity is strongly suppressed. This phenomenon is general and is expected to occur around any sufficiently powerful cosmic ray source in the Galaxy. Our results are consistent with recent γ-ray observations where emission from the region around supernova remnants and stellar clusters have been used to infer that the diffusion coefficient around these sources is ∼10−100 times smaller than the typical Galactic one. 
    more » « less
  2. ABSTRACT We investigate the possibility of cosmic ray (CR) confinement by charged dust grains through resonant drag instabilities (RDIs). We perform magnetohydrodynamic particle-in-cell simulations of magnetized gas mixed with charged dust and cosmic rays, with the gyro-radii of dust and GeV CRs on ∼au scales fully resolved. As a first study, we focus on one type of RDI wherein charged grains drift super-Alfvénically, with Lorentz forces strongly dominating over drag forces. Dust grains are unstable to the RDIs and form concentrated columns and sheets, whose scale grows until saturating at the simulation box size. Initially perfectly streaming CRs are strongly scattered by RDI-excited Alfvén waves, with the growth rate of the CR perpendicular velocity components equaling the growth rate of magnetic field perturbations. These rates are well-predicted by analytic linear theory. CRs finally become isotropized and drift at least at ∼vA by unidirectional Alfvén waves excited by the RDIs, with a uniform distribution of the pitch angle cosine μ and a flat profile of the CR pitch angle diffusion coefficient Dμμ around μ = 0, without the ‘90○ pitch angle problem.’ With CR feedback on the gas included, Dμμ decreases by a factor of a few, indicating a lower CR scattering rate, because the backreaction on the RDI from the CR pressure adds extra wave damping, leading to lower quasi-steady-state scattering rates. Our study demonstrates that the dust-induced CR confinement can be very important under certain conditions, e.g. the dusty circumgalactic medium around quasars or superluminous galaxies. 
    more » « less
  3. null (Ed.)
    Abstract Cosmic rays (CRs) with ∼ GeV energies can contribute significantly to the energy and pressure budget in the interstellar, circumgalactic, and intergalactic medium (ISM, CGM, IGM). Recent cosmological simulations have begun to explore these effects, but almost all studies have been restricted to simplified models with constant CR diffusivity and/or streaming speeds. Physical models of CR propagation/scattering via extrinsic turbulence and self-excited waves predict transport coefficients which are complicated functions of local plasma properties. In a companion paper, we consider a wide range of observational constraints to identify proposed physically-motivated cosmic-ray propagation scalings which satisfy both detailed Milky Way (MW) and extra-galactic γ-ray constraints. Here, we compare the effects of these models relative to simpler “diffusion+streaming” models on galaxy and CGM properties at dwarf through MW mass scales. The physical models predict large local variations in CR diffusivity, with median diffusivity increasing with galacto-centric radii and decreasing with galaxy mass and redshift. These effects lead to a more rapid dropoff of CR energy density in the CGM (compared to simpler models), in turn producing weaker effects of CRs on galaxy star formation rates (SFRs), CGM absorption profiles and galactic outflows. The predictions of the more physical CR models tend to lie “in between” models which ignore CRs entirely and models which treat CRs with constant diffusivity. 
    more » « less
  4. null (Ed.)
    Context. The spectrum of cosmic ray protons and electrons released by supernova remnants throughout their evolution is poorly known because of the difficulty in accounting for particle escape and confinement downstream of a shock front, where both adiabatic and radiative losses are present. Since electrons lose energy mainly through synchrotron losses, it is natural to ask whether the spectrum released into the interstellar medium may be different from that of their hadronic counterpart. Independent studies of cosmic ray transport through the Galaxy require that the source spectrum of electrons and protons be very different. Therefore, the above question acquires a phenomenological relevance. Aims. Here we calculate the spectrum of cosmic ray protons released during the evolution of supernovae of different types, accounting for the escape from the upstream region and for adiabatic losses of particles advected downstream of the shock and liberated at later times. The same calculation is carried out for electrons, where in addition to adiabatic losses we take the radiative losses suffered behind the shock into account. These electrons are dominated by synchrotron losses in the magnetic field, which most likely is self-generated by cosmic rays accelerated at the shock. Methods. We use standard temporal evolution relations for supernova shocks expanding in different types of interstellar media together with an analytic description of particle acceleration and magnetic field amplification to determine the density and spectrum of cosmic ray particles. Their evolution in time is derived by numerically solving the equation describing advection with adiabatic and radiative losses for electrons and protons. The flux from particles continuously escaping the supernova remnants is also accounted for. Results. The magnetic field in the post-shock region is calculated by using an analytic treatment of the magnetic field amplification due to nonresonant and resonant streaming instability and their saturation. The resulting field is compared with the available set of observational results concerning the dependence of the magnetic field strength upon shock velocity. We find that when the field is the result of the growth of the cosmic-ray-driven nonresonant instability alone, the spectrum of electrons and protons released by a supernova remnant are indeed different; however, such a difference becomes appreciable only at energies ≳100−1000 GeV, while observations of the electron spectrum require such a difference to be present at energies as low as ∼10 GeV. An effect at such low energies requires substantial magnetic field amplification in the late stages of supernova remnant evolution (shock velocity ≪1000 km s −1 ); this may not be due to streaming instability but rather hydrodynamical processes. We comment on the feasibility of such conditions and speculate on the possibility that the difference in spectral shape between electrons and protons may reflect either some unknown acceleration effect or additional energy losses in cocoons around the sources. 
    more » « less
  5. ABSTRACT

    Many recent numerical studies have argued that cosmic rays (CRs) from supernovae (SNe) or active galactic nuclei (AGNs) could play a crucial role in galaxy formation, in particular by establishing a CR-pressure-dominated circumgalactic medium (CGM). But explicit CR-magnetohydrodynamics (CR-MHD) remains computationally expensive, and it is not clear whether those results can be applied to simulations that do not explicitly treat magnetic fields or resolved interstellar medium phase structure. We therefore present an intentionally extremely simplified ‘sub-grid’ model for CRs, which attempts to capture the key qualitative behaviors of greatest interest for those interested in simulations or semi-analytical models including some approximate CR effects on galactic (≳ kpc) scales, while imposing negligible computational overhead. The model is numerically akin to some recently developed sub-grid models for radiative feedback, and allows for a simple constant parametrization of the CR diffusivity and/or streaming speed; it allows for an arbitrary distribution of sources (proportional to black hole accretion rates or star–particle SNe rates or gas/galaxy star formation rates), and interpolates between the limits where CRs escape the galaxies with negligible losses and those where CRs lose most of their energy catastrophically before escape (relevant in e.g. starburst galaxies). The numerical equations are solved trivially alongside gravity in most codes. We compare this to explicit CR-MHD simulations and discuss where the (many) sub-grid approximations break down, and what drives the major sources of uncertainty.

     
    more » « less