Understanding the underlying physics of charge transport in organic semiconductors under illumination is important for the development of novel optoelectronic applications. We study the effects of monochromatic light in the visible spectrum on the channel of an organic thin-film transistor based on 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene. When the channel of the transistor was illuminated with red, green, or blue light, more charge carriers were measured than what exciton generation from photon absorption alone could provide, leading to a photon-to-charge-carrier conversion efficiency much larger than 100%. We explain this phenomenon using a model incorporating space-charge limited photocharges and enhanced hole injection from the source electrode due to lowering of the potential barrier by photogenerated electrons.
more »
« less
Voltage controlled bio-organic inverse phototransistor
Thin films of poly-d-lysine act as polar organic and are also light sensitive. The capacitance-voltage, current-voltage, and transistor behavior were studied to gauge the photoresponse of possible poly-d-lysine thin film devices both with and without methylene blue as an additive. Transistors fabricated from poly-d-lysine act as inverse phototransistors, i.e., the on-state current is greatest in the absence of illumination. The poly-d-lysine thin film capacitance and the transistor current decrease with illumination, both with and without methylene blue as an additive. This suggests that the unbinding of photo exciton is significantly hindered in this system which is supported by the significant charge carrier lifetime for poly-d-lysine films both with and without methylene blue. For the majority carrier, the transistor geometry appears to depend on the gate voltage; in other words, the majority carrier depends on the polarization of the poly-d-lysine films, both with and without methylene blue as an additive.
more »
« less
- PAR ID:
- 10364061
- Publisher / Repository:
- American Vacuum Society
- Date Published:
- Journal Name:
- Biointerphases
- Volume:
- 17
- Issue:
- 2
- ISSN:
- 1934-8630
- Page Range / eLocation ID:
- Article No. 021003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Amorphous oxide semiconductors (AOSs), specifically those based on ternary cation systems such as Ga-, Si-, and Hf-doped InZnO, have emerged as promising material candidates for application in next-gen transparent electronic and optoelectronic devices. Third cation-doping is a common method used during the manufacturing of amorphous oxide thin film transistors (TFTs), primarily with the intention of suppressing carrier generation during the fabrication of the channel layer of a transistor. However, the incorporation of a third cation species has been observed to negatively affect the carrier transport properties of the thin film, as it may act as an additional scattering center and subsequently lower the carrier mobility from ∼20–40 cm 2 V −1 s −1 of In 2 O 3 or a binary cation system ( i.e. , InZnO) to ∼1–10 cm 2 V −1 s −1 . This study investigates the structural, electrical, optoelectronic, and chemical properties of the ternary cation material system, InAlZnO (IAZO). The optimized carrier mobility (Hall Effect) of Al-doped InZnO is shown to remain as high as ∼25–45 cm 2 V −1 s −1 . Furthermore, Al incorporation in InZnO proves to enhance the amorphous phase stability under thermal stresses when compared to baseline InZnO films. Thin film transistors integrating optimized IAZO as the channel layer are shown to demonstrate promisingly high field effect mobilities (∼18–20 cm 2 V −1 s −1 ), as well as excellent drain current saturation and high drain current on/off ratios (>10 7 ). The high mobility and improved amorphous phase stability suggest strong potential for IAZO incorporation in the next generation of high performance and sustainable optoelectronic devices such as transparent displays.more » « less
-
We report the results of the investigation of low-frequency electronic noise in ZrS3 van der Waals semiconductor nanoribbons. The test structures were of the back-gated field-effect-transistor type with a normally off n-channel and an on-to-off ratio of up to four orders of magnitude. The current–voltage transfer characteristics revealed significant hysteresis owing to the presence of deep levels. The noise in ZrS3 nanoribbons had spectral density SI ∼ 1/fγ (f is the frequency) with γ = 1.3–1.4 within the whole range of the drain and gate bias voltages. We used light illumination to establish that the noise is due to generation–recombination, owing to the presence of deep levels, and determined the energies of the defects that act as the carrier trapping centers in ZrS3 nanoribbons.more » « less
-
Many biological lab-on-a-chip applications require electrical and optical manipulation as well as detection of cells and biomolecules. This provides an intriguing challenge to design robust microdevices that resist adverse electrochemical side reactions yet achieve optical transparency. Physical isolation of biological samples from microelectrodes can prevent contamination, electrode fouling, and electrochemical byproducts; thus this manuscript explores hafnium oxide (HfO2) films - originating from traditional transistor applications – for suitability in electrokinetic microfluidic devices for biological applications. HfO2 films with deposition times of 6.5, 13, and 20 min were sputter deposited onto silicon and glass substrates. The structural, optical, and electrical properties of the HfO2 films were investigated using atomic force microscopy (AFM), X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, ellipsometry, and capacitance voltage. Electric potential simulations of the HfO2 films and a biocompatibility study provided additional insights. Film grain size after corrosive Piranha treatment was observed via AFM. The crystalline structure investigated via X-ray diffraction revealed all films exhibited the (111) characteristic peak with thicker films exhibiting multiple peaks indicative of anisotropic structures. Energy dispersive X-ray spectroscopy via field emission scanning electron microscopy and Fourier transform infrared spectroscopy both corroborated the atomic ratio of the films as HfO2. Ellipsometry data from Si yielded thicknesses of 58, 127, and 239 nm and confirmed refractive index and extinction coefficients within the normal range for HfO2; glass data yielded unreliable thickness verifications due to film and substrate transparency. Capacitance-voltage results produced an average dielectric constant of 20.32, and the simulations showed that HfO2 dielectric characteristics were sufficient to electrically passivate planar microelectrodes. HfO2 biocompatibility was determined with human red blood cells by quantifying the hemolytic potential of the HfO2 films. Overall results support hafnium oxide as a viable passivation material for biological lab-on-a-chip applications.more » « less
-
Abstract With power conversion efficiencies now exceeding 25%, hybrid perovskite solar cells require deeper understanding of defects and processing to further approach the Shockley‐Queisser limit. One approach for processing enhancement and defect reduction involves additive engineering—, e.g., addition of MASCN (MA = methylammonium) and excess PbI2have been shown to modify film grain structure and improve performance. However, the underlying impact of these additives on transport and recombination properties remains to be fully elucidated. In this study, a newly developed carrier‐resolved photo‐Hall (CRPH) characterization technique is used that gives access to both majority and minority carrier properties within the same sample and over a wide range of illumination conditions. CRPH measurements on n‐type MAPbI3films reveal an order of magnitude increase in carrier recombination lifetime and electron density for 5% excess PbI2added to the precursor solution, with little change noted in electron and hole mobility values. Grain size variation (120–2100 nm) and MASCN addition induce no significant change in carrier‐related parameters considered, highlighting the benign nature of the grain boundaries and that excess PbI2must predominantly passivate bulk defects rather than defects situated at grain boundaries. This study offers a unique picture of additive impact on MAPbI3optoelectronic properties as elucidated by the new CRPH approach.more » « less
An official website of the United States government
