Abstract We compare two-moment-basedenergy-dependentand three variants ofenergy-integratedneutrino transport general-relativistic magnetohydrodynamics simulations of a hypermassive neutron star. To study the impacts due to the choice of the neutrino transport schemes, we perform simulations with the same setups and input neutrino microphysics. We show that the main differences between energy-dependent and energy-integrated neutrino transport are found in the disk and ejecta properties, as well as in the neutrino signals. The properties of the disk surrounding the neutron star and the ejecta in energy-dependent transport are very different from the ones obtained using energy-integrated schemes. Specifically, in the energy-dependent case, the disk is more neutron-rich at early times and becomes geometrically thicker at later times. In addition, the ejecta is more massive and, on average, more neutron-rich in the energy-dependent simulations. Moreover, the average neutrino energies and luminosities are about 30% higher. Energy-dependent neutrino transport is necessary if one wants to better model the neutrino signals and matter outflows from neutron star merger remnants via numerical simulations. 
                        more » 
                        « less   
                    
                            
                            A new moment-based general-relativistic neutrino-radiation transport code: Methods and first applications to neutron star mergers
                        
                    
    
            ABSTRACT We present a new moment-based energy-integrated neutrino transport code for neutron star merger simulations in general relativity. In the merger context, ours is the first code to include Doppler effects at all orders in υ/c, retaining all non-linear neutrino–matter coupling terms. The code is validated with a stringent series of tests. We show that the inclusion of full neutrino–matter coupling terms is necessary to correctly capture the trapping of neutrinos in relativistically moving media, such as in differentially rotating merger remnants. We perform preliminary simulations proving the robustness of the scheme in simulating ab-initio mergers to black hole collapse and long-term neutron star remnants up to $${\sim }70\,$$ ms. The latter is the longest dynamical space-time, 3D, general relativistic simulations with full neutrino transport to date. We compare results obtained at different resolutions and using two different closures for the moment scheme. We do not find evidences of significant out-of-thermodynamic equilibrium effects, such as bulk viscosity, on the post-merger dynamics or gravitational wave emission. Neutrino luminosities and average energies are in good agreement with theory expectations and previous simulations by other groups using similar schemes. We compare dynamical and early wind ejecta properties obtained with M1 and with our older neutrino treatment. We find that the M1 results have systematically larger proton fractions. However, the differences in the nucleosynthesis yields are modest. This work sets the basis for future detailed studies spanning a wider set of neutrino reactions, binaries, and equations of state. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10364415
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 512
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 1499-1521
- Size(s):
- p. 1499-1521
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present a 3D general-relativistic magnetohydrodynamic simulation of a short-lived neutron star remnant formed in the aftermath of a binary neutron star merger. The simulation uses an M1 neutrino transport scheme to track neutrino–matter interactions and is well suited to studying the resulting nucleosynthesis and kilonova emission. A magnetized wind is driven from the remnant and ejects neutron-rich material at a quasi-steady-state rate of 0.8 × 10−1M⊙s−1. We find that the ejecta in our simulations underproducer-process abundances beyond the secondr-process peak. For sufficiently long-lived remnants, these outflowsalonecan produce blue kilonovae, including the blue kilonova component observed for AT2017gfo.more » « less
- 
            Abstract We introduceWeakhub, a novel neutrino microphysics library that provides opacities and kernels beyond conventional interactions used in the literature. This library includes neutrino–matter, neutrino–neutrino interactions and plasma process, along with corresponding weak and strong corrections. A full kinematics approach is adopted for the calculations ofβ-processes, incorporating various weak corrections and medium modifications due to the nuclear equation of state. Calculations of plasma processes, electron neutrino–antineutrino annihilation, and nuclear de-excitation are also included. We also present the detailed derivations of weak interactions and the coupling to the two-moment based general-relativistic multigroup radiation transport in the general-relativisticmultigridnumerical (Gmunu) code. We compare the neutrino opacity spectra for all interactions and estimate their contributions at hydrodynamical points in core-collapse supernovae and binary neutron star (BNS) postmerger remnants, and predict the effects of improved opacities in comparison to conventional ones for a BNS postmerger at a specific hydrodynamical point. We test the implementation of the conventional set of interactions by comparing it to an open-source neutrino libraryNuLibin a core-collapse supernova simulation. We demonstrate good agreement with discrepancies of less than ∼10% in luminosity for all neutrino species, while also highlighting the reasons contributing to the differences. To compare the advanced interactions to the conventional set in core-collapse supernova modeling, we perform simulations to analyze their impacts on neutrino signatures, hydrodynamical behaviors, and shock dynamics, showing significant deviations.more » « less
- 
            ABSTRACT We present a systematic numerical relativity study of the impact of different physics input and grid resolution in binary neutron star mergers. We compare simulations employing a neutrino leakage scheme, leakage plus M0 scheme, the M1 transport scheme, and pure hydrodynamics. Additionally, we examine the effect of a sub-grid scheme for turbulent viscosity. We find that the overall dynamics and thermodynamics of the remnant core are robust, implying that the maximum remnant density could be inferred from gravitational wave observations. Black hole collapse instead depends significantly on viscosity and grid resolution. Differently from recent work, we identify possible signatures of neutrino effects in the gravitational waves only at the highest resolutions considered; new high-resolution simulations will be thus required to build accurate gravitational wave templates to observe these effects. Different neutrino transport schemes impact significantly mass, geometry, and composition of the remnant’s disc and ejecta; M1 simulations show systematically larger proton fractions, reaching maximum values larger than 0.4. r-process nucleosynthesis yields reflect the different ejecta compositions; they are in agreement and reproduce residual solar abundances only if M0 or M1 neutrino transport schemes are adopted. We compute kilonova light curves using spherically-symmetric radiation-hydrodynamics evolutions up to 15 d post-merger, finding that they are mostly sensitive to the ejecta mass and electron fraction; accounting for multiple ejecta components appears necessary for reliable light curve predictions. We conclude that advanced neutrino schemes and resolutions higher than current standards are essential for robust long-term evolutions and detailed astrophysical predictions.more » « less
- 
            Abstract We present the implementation of a two-moment-based general-relativistic multigroup radiation transport module in theGeneral-relativisticmultigridnumerical (Gmunu) code. On top of solving the general-relativistic magnetohydrodynamics and the Einstein equations with conformally flat approximations, the code solves the evolution equations of the zeroth- and first-order moments of the radiations in the Eulerian-frame. An analytic closure relation is used to obtain the higher order moments and close the system. The finite-volume discretization has been adopted for the radiation moments. The advection in spatial space and frequency-space are handled explicitly. In addition, the radiation–matter interaction terms, which are very stiff in the optically thick region, are solved implicitly. The implicit–explicit Runge–Kutta schemes are adopted for time integration. We test the implementation with a number of numerical benchmarks from frequency-integrated to frequency-dependent cases. Furthermore, we also illustrate the astrophysical applications in hot neutron star and core-collapse supernovae modelings, and compare with other neutrino transport codes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
