skip to main content

Title: A new moment-based general-relativistic neutrino-radiation transport code: Methods and first applications to neutron star mergers
ABSTRACT

We present a new moment-based energy-integrated neutrino transport code for neutron star merger simulations in general relativity. In the merger context, ours is the first code to include Doppler effects at all orders in υ/c, retaining all non-linear neutrino–matter coupling terms. The code is validated with a stringent series of tests. We show that the inclusion of full neutrino–matter coupling terms is necessary to correctly capture the trapping of neutrinos in relativistically moving media, such as in differentially rotating merger remnants. We perform preliminary simulations proving the robustness of the scheme in simulating ab-initio mergers to black hole collapse and long-term neutron star remnants up to ${\sim }70\,$ ms. The latter is the longest dynamical space-time, 3D, general relativistic simulations with full neutrino transport to date. We compare results obtained at different resolutions and using two different closures for the moment scheme. We do not find evidences of significant out-of-thermodynamic equilibrium effects, such as bulk viscosity, on the post-merger dynamics or gravitational wave emission. Neutrino luminosities and average energies are in good agreement with theory expectations and previous simulations by other groups using similar schemes. We compare dynamical and early wind ejecta properties obtained with M1 and with our more » older neutrino treatment. We find that the M1 results have systematically larger proton fractions. However, the differences in the nucleosynthesis yields are modest. This work sets the basis for future detailed studies spanning a wider set of neutrino reactions, binaries, and equations of state.

« less
Authors:
; ; ;
Award ID(s):
2004879 2108467 2116686 2011725
Publication Date:
NSF-PAR ID:
10364415
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
1
Page Range or eLocation-ID:
p. 1499-1521
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present a systematic numerical relativity study of the impact of different physics input and grid resolution in binary neutron star mergers. We compare simulations employing a neutrino leakage scheme, leakage plus M0 scheme, the M1 transport scheme, and pure hydrodynamics. Additionally, we examine the effect of a sub-grid scheme for turbulent viscosity. We find that the overall dynamics and thermodynamics of the remnant core are robust, implying that the maximum remnant density could be inferred from gravitational wave observations. Black hole collapse instead depends significantly on viscosity and grid resolution. Differently from recent work, we identify possible signatures of neutrino effects in the gravitational waves only at the highest resolutions considered; new high-resolution simulations will be thus required to build accurate gravitational wave templates to observe these effects. Different neutrino transport schemes impact significantly mass, geometry, and composition of the remnant’s disc and ejecta; M1 simulations show systematically larger proton fractions, reaching maximum values larger than 0.4. r-process nucleosynthesis yields reflect the different ejecta compositions; they are in agreement and reproduce residual solar abundances only if M0 or M1 neutrino transport schemes are adopted. We compute kilonova light curves using spherically-symmetric radiation-hydrodynamics evolutions up to 15 d post-merger, findingmore »that they are mostly sensitive to the ejecta mass and electron fraction; accounting for multiple ejecta components appears necessary for reliable light curve predictions. We conclude that advanced neutrino schemes and resolutions higher than current standards are essential for robust long-term evolutions and detailed astrophysical predictions.« less
  2. Abstract

    Numerical simulations of neutron star–neutron star and neutron star–black hole binaries play an important role in our ability to model gravitational-wave and electromagnetic signals powered by these systems. These simulations have to take into account a wide range of physical processes including general relativity, magnetohydrodynamics, and neutrino radiation transport. The latter is particularly important in order to understand the properties of the matter ejected by many mergers, the optical/infrared signals powered by nuclear reactions in the ejecta, and the contribution of that ejecta to astrophysical nucleosynthesis. However, accurate evolutions of the neutrino transport equations that include all relevant physical processes remain beyond our current reach. In this review, I will discuss the current state of neutrino modeling in general relativistic simulations of neutron star mergers and of their post-merger remnants. I will focus on the three main types of algorithms used in simulations so far: leakage, moments, and Monte-Carlo scheme. I will review the advantages and limitations of each scheme, as well as the various neutrino–matter interactions that should be included in simulations. We will see that the quality of the treatment of neutrinos in merger simulations has greatly increased over the last decade, but also that many potentiallymore »important interactions remain difficult to take into account in simulations (pair annihilation, oscillations, inelastic scattering).

    « less
  3. ABSTRACT

    We investigate r-process nucleosynthesis and kilonova emission resulting from binary neutron star (BNS) mergers based on a three-dimensional (3D) general-relativistic magnetohydrodynamic (GRMHD) simulation of a hypermassive neutron star (HMNS) remnant. The simulation includes a microphysical finite-temperature equation of state (EOS) and neutrino emission and absorption effects via a leakage scheme. We track the thermodynamic properties of the ejecta using Lagrangian tracer particles and determine its composition using the nuclear reaction network SkyNet. We investigate the impact of neutrinos on the nucleosynthetic yields by varying the neutrino luminosities during post-processing. The ejecta show a broad distribution with respect to their electron fraction Ye, peaking between ∼0.25–0.4 depending on the neutrino luminosity employed. We find that the resulting r-process abundance patterns differ from solar, with no significant production of material beyond the second r-process peak when using luminosities recorded by the tracer particles. We also map the HMNS outflows to the radiation hydrodynamics code SNEC and predict the evolution of the bolometric luminosity as well as broadband light curves of the kilonova. The bolometric light curve peaks on the timescale of a day and the brightest emission is seen in the infrared bands. This is the first direct calculation of the r-processmore »yields and kilonova signal expected from HMNS winds based on 3D GRMHD simulations. For longer-lived remnants, these winds may be the dominant ejecta component producing the kilonova emission.

    « less
  4. Abstract

    We present the implementation of a two-moment-based general-relativistic multigroup radiation transport module in theGeneral-relativisticmultigridnumerical (Gmunu) code. On top of solving the general-relativistic magnetohydrodynamics and the Einstein equations with conformally flat approximations, the code solves the evolution equations of the zeroth- and first-order moments of the radiations in the Eulerian-frame. An analytic closure relation is used to obtain the higher order moments and close the system. The finite-volume discretization has been adopted for the radiation moments. The advection in spatial space and frequency-space are handled explicitly. In addition, the radiation–matter interaction terms, which are very stiff in the optically thick region, are solved implicitly. The implicit–explicit Runge–Kutta schemes are adopted for time integration. We test the implementation with a number of numerical benchmarks from frequency-integrated to frequency-dependent cases. Furthermore, we also illustrate the astrophysical applications in hot neutron star and core-collapse supernovae modelings, and compare with other neutrino transport codes.

  5. Abstract

    We study the impact of finite-temperature effects in numerical-relativity simulations of binary neutron star mergers with microphysical equations of state and neutrino transport in which we vary the effective nucleon masses in a controlled way. We find that, as the specific heat is increased, the merger remnants become colder and more compact due to the reduced thermal pressure support. Using a full Bayesian analysis, we demonstrate that this effect will be measurable in the postmerger gravitational wave signal with next-generation observatories at signal-to-noise ratios of 15.