Abstract We present the implementation of a two-moment-based general-relativistic multigroup radiation transport module in theGeneral-relativisticmultigridnumerical (Gmunu) code. On top of solving the general-relativistic magnetohydrodynamics and the Einstein equations with conformally flat approximations, the code solves the evolution equations of the zeroth- and first-order moments of the radiations in the Eulerian-frame. An analytic closure relation is used to obtain the higher order moments and close the system. The finite-volume discretization has been adopted for the radiation moments. The advection in spatial space and frequency-space are handled explicitly. In addition, the radiation–matter interaction terms, which are very stiff in the optically thick region, are solved implicitly. The implicit–explicit Runge–Kutta schemes are adopted for time integration. We test the implementation with a number of numerical benchmarks from frequency-integrated to frequency-dependent cases. Furthermore, we also illustrate the astrophysical applications in hot neutron star and core-collapse supernovae modelings, and compare with other neutrino transport codes. 
                        more » 
                        « less   
                    
                            
                            General-relativistic Radiation Transport Scheme in Gmunu. II. Implementation of Novel Microphysical Library for Neutrino Radiation—Weakhub
                        
                    
    
            Abstract We introduceWeakhub, a novel neutrino microphysics library that provides opacities and kernels beyond conventional interactions used in the literature. This library includes neutrino–matter, neutrino–neutrino interactions and plasma process, along with corresponding weak and strong corrections. A full kinematics approach is adopted for the calculations ofβ-processes, incorporating various weak corrections and medium modifications due to the nuclear equation of state. Calculations of plasma processes, electron neutrino–antineutrino annihilation, and nuclear de-excitation are also included. We also present the detailed derivations of weak interactions and the coupling to the two-moment based general-relativistic multigroup radiation transport in the general-relativisticmultigridnumerical (Gmunu) code. We compare the neutrino opacity spectra for all interactions and estimate their contributions at hydrodynamical points in core-collapse supernovae and binary neutron star (BNS) postmerger remnants, and predict the effects of improved opacities in comparison to conventional ones for a BNS postmerger at a specific hydrodynamical point. We test the implementation of the conventional set of interactions by comparing it to an open-source neutrino libraryNuLibin a core-collapse supernova simulation. We demonstrate good agreement with discrepancies of less than ∼10% in luminosity for all neutrino species, while also highlighting the reasons contributing to the differences. To compare the advanced interactions to the conventional set in core-collapse supernova modeling, we perform simulations to analyze their impacts on neutrino signatures, hydrodynamical behaviors, and shock dynamics, showing significant deviations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2020275
- PAR ID:
- 10509464
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 272
- Issue:
- 1
- ISSN:
- 0067-0049
- Page Range / eLocation ID:
- 9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor (β-)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dynamics during the collision by incorporating direct and modified Urca processes (in the neutrino-transparent regime) into general-relativistic hydrodynamics simulations with a simplified neutrino transport scheme. We demonstrate how weak-interaction-driven bulk viscosity in postmerger simulations can emerge and assess the bulk viscous dynamics of the resulting flow. We further place limits on the impact of the postmerger gravitational-wave strain. Our results show that weak-interaction-driven bulk viscosity can potentially lead to a phase shift of the postmerger gravitational-wave spectrum, although the effect is currently on the same level as the numerical errors of our simulation.more » « less
- 
            We review the computation of and associated uncertainties in the current understanding of the relic neutrino background due to core-collapse supernovae, black hole formation and neutron star merger events. We consider the current status of uncertainties due to the nuclear equation of state (EoS), the progenitor masses, the source supernova neutrino spectrum, the cosmological star formation rate, the stellar initial mass function, neutrino oscillations, and neutrino self-interactions. We summarize the current viability of future neutrino detectors to distinguish the nuclear EoS and the temperature of supernova neutrinos via the detected relic supernova neutrino spectrum.more » « less
- 
            We consider the potential for a 10 kg undoped cryogenic CsI detector operating at the Spallation Neutron Source to measure coherent elastic neutrino-nucleus scattering and its sensitivity to discover new physics beyond the standard model (BSM). Through a combination of increased event rate, lower threshold, and good timing resolution, such a detector would significantly improve on past measurements. We considered tests of several BSM scenarios such as neutrino nonstandard interactions and accelerator-produced dark matter. This detector’s performance was also studied for relevant questions in nuclear physics and neutrino astronomy, namely the weak charge distribution of Cs and I nuclei and detection of neutrinos from a core-collapse supernova. Published by the American Physical Society2024more » « less
- 
            Abstract Novel neutrino self-interaction can open up viable parameter space for the relic abundance of sterile-neutrino dark matter (S ν DM). In this work, we constrain the relic target using core-collapse supernova which features the same fundamental process and a similar environment to the early universe era when S ν DM is dominantly produced. We present a detailed calculation of the effects of a massive scalar mediated neutrino self-interaction on the supernova cooling rate, including the derivation of the thermal potential in the presence of non-zero chemical potentials from plasma species. Our results demonstrate that the supernova cooling argument can cover the neutrino self-interaction parameter space that complements terrestrial and cosmological probes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    