skip to main content


Title: Design of the ion-optics for the MRSt neutron spectrometer at the National Ignition Facility (NIF)

A new Magnetic Recoil Spectrometer (MRSt) is designed to provide time-resolved measurements of the energy spectrum of neutrons emanating from an inertial confinement fusion implosion at the National Ignition Facility. At present, time integrated parameters are being measured using the existing magnet recoil and neutron time-of-flight spectrometers. The capability of high energy resolution of 2 keV and the extension to high time resolution of about 20 ps are expected to improve our understanding of conditions required for successful fusion experiments. The layout, ion-optics, and specifications of the MRSt will be presented.

 
more » « less
Award ID(s):
2011890
NSF-PAR ID:
10364451
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
3
ISSN:
0034-6748
Page Range / eLocation ID:
Article No. 033505
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Paleo-detectors are a proposed experimental technique to search for dark matter (DM). In lieu of the conventional approach of operating a tonne-scale real-time detector to search for DM-induced nuclear recoils, paleo-detectors take advantage of small samples of naturally occurring rocks on Earth that have been deep underground (≳5 km), accumulating nuclear damage tracks from recoiling nuclei for O(1)Gyr. Modern microscopy techniques promise the capability to read out nuclear damage tracks with nanometer resolution in macroscopic samples. Thanks to their O(1)Gyr integration times, paleo-detectors could constitute nuclear recoil detectors with keV recoil energy thresholds and 100 kilotonne-yr exposures. This combination would allow paleo-detectors to probe DM-nucleon cross sections orders of magnitude below existing upper limits from conventional direct detection experiments. In this article, we use improved background modeling and a new spectral analysis technique to update the sensitivity forecast for paleo-detectors. We demonstrate the robustness of the sensitivity forecast to the (lack of) ancillary measurements of the age of the samples and the parameters controlling the backgrounds, systematic mismodeling of the spectral shape of the backgrounds, and the radiopurity of the mineral samples. Specifically, we demonstrate that even if the uranium concentration in paleo-detector samples is 10−8 (per weight), many orders of magnitude larger than what we expect in the most radiopure samples obtained from ultra basic rock or marine evaporite deposits, paleo-detectors could still probe DM-nucleon cross sections below current limits. For DM masses ≲ 10 GeV/c2, the sensitivity of paleo-detectors could still reach down all the way to the conventional neutrino floor in a Xe-based direct detection experiment. 
    more » « less
  2. ABSTRACT

    The upcoming Laser Interferometer Space Antenna (LISA) is expected to detect gravitational waves (GWs) from massive black hole binaries (MBHB). Finding the electromagnetic (EM) counterparts for these GW events will be crucial for understanding how and where MBHBs merge, measuring their redshifts, constraining the Hubble constant and the graviton mass, and for other novel science applications. However, due to poor GW sky localization, multiwavelength, time-dependent EM models are needed to identify the right host galaxy. We studied merging MBHBs embedded in a circumbinary disc (CBD) using high-resolution two-dimensional simulations, with a Γ-law equation of state, incorporating viscous heating, shock heating, and radiative cooling. We simulate the binary from large separation until after merger, allowing us to model the decoupling of the binary from the CBD. We compute the EM signatures and identify distinct features before, during, and after the merger. Our main result is a multiband EM signature: we find that the MBHB produces strong thermal X-ray emission until 1–2 d prior to the merger. However, as the binary decouples from the CBD, the X-ray-bright minidiscs rapidly shrink in size, become disrupted, and the accretion rate drops precipitously. As a result, the thermal X-ray luminosity drops by orders of magnitude, and the source remains X-ray dark for several days, regardless of any post-merger effects such as GW recoil or mass-loss. Looking for the abrupt spectral change where the thermal X-ray disappears is a tell-tale EM signature of LISA mergers that does not require extensive pre-merger monitoring.

     
    more » « less
  3. ABSTRACT

    Using simulations of non-rotating supernova progenitors, we explore the kicks imparted to and the spins induced in the compact objects birthed in core collapse. We find that the recoil due to neutrino emissions can be a factor affecting core recoil, comparable to and at times larger than the corresponding kick due to matter recoil. This result would necessitate a revision of the general model of the origin of pulsar proper motions. In addition, we find that the sign of the net neutrino momentum can be opposite to the sign of the corresponding matter recoil. As a result, at times the pulsar recoil and ejecta can be in the same direction. Moreover, our results suggest that the duration of the dipole in the neutrino emissions can be shorter than the duration of the radiation of the neutron-star binding energy. This allows a larger dipole asymmetry to arise, but for a shorter time, resulting in kicks in the observed pulsar range. Furthermore, we find that the spin induced by the aspherical accretion of matter can leave the residues of collapse with spin periods comparable to those inferred for radio pulsars and that there seems to be a slight anticorrelation between the direction of the induced spin and the net kick direction. This could explain such a correlation among observed radio pulsars. Finally, we find that the kicks imparted to black holes are due to the neutrino recoil alone, resulting in birth kicks ≤100 km s−1 most of the time.

     
    more » « less
  4. Abstract

    We have simulated the collapse and evolution of the core of a solar-metallicity 40Mstar and find that it explodes vigorously by the neutrino mechanism, despite its very high “compactness.” Within ∼1.5 s of explosion, a black hole forms. The explosion is very asymmetrical and has a total explosion energy of ∼1.6 × 1051erg. At black hole formation, its baryon mass is ∼2.434Mand gravitational mass is 2.286M. Seven seconds after black hole formation, an additional ∼0.2Mis accreted, leaving a black hole baryon mass of ∼2.63M. A disk forms around the proto−neutron star, from which a pair of neutrino-driven jets emanates. These jets accelerate some of the matter up to speeds of ∼45,000 km s−1and contain matter with entropies of ∼50. The large spatial asymmetry in the explosion results in a residual black hole recoil speed of ∼1000 km s−1. This novel black hole formation channel now joins the other black hole formation channel between ∼12 and ∼15Mdiscovered previously and implies that the black hole/neutron star birth ratio for solar-metallicity stars could be ∼20%. However, one channel leaves black holes in perhaps the ∼5–15Mrange with low kick speeds, while the other leaves black holes in perhaps the ∼2.5–3.0Mmass range with high kick speeds. However, even ∼8.8 s after core bounce the newly formed black hole is still accreting at a rate of ∼2 × 10−2Ms−1, and whether the black hole eventually achieves a significantly larger mass over time is yet to be determined.

     
    more » « less
  5. Abstract We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp , $$^7$$ 7 Be, $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep . The precision of the $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep components is hindered by the double-beta decay of $$^{136}$$ 136 Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, $$\sin ^2\theta _w$$ sin 2 θ w , and the electron-type neutrino survival probability, $$P_{ee}$$ P ee , in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and $$^7$$ 7 Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1–2.5 $$\sigma $$ σ significance, independent of external measurements from other experiments or a measurement of $$^8$$ 8 B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of $$^{131}$$ 131 Xe. 
    more » « less