skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In search of the maximum lost momentum
We performed a series of 1381 full numerical simulations of high energy collision of two black holes to search for the maximum recoil velocity after their merger. We studied equal mass binaries with opposite spins pointing along the orbital plane to maximize asymmetric gravitational radiation and performed a search of spin orientations in the plane, impact parameters, and initial linear momenta to find a maximum recoil velocity extrapolated to the extreme spinning case of [Formula: see text][Formula: see text]km/s, thus tightly bounding recoil by [Formula: see text] the speed of light.  more » « less
Award ID(s):
2207920
PAR ID:
10532432
Author(s) / Creator(s):
;
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
International Journal of Modern Physics D
Volume:
32
Issue:
14
ISSN:
0218-2718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-resolution large eddy simulations and complementary laboratory experiments using particle image velocimetry were performed to provide a detailed quantitative assessment of flow response to gaps in cylinder arrays. The base canopy consists of a dense array of emergent rigid cylinders placed in a regular staggered pattern. The gaps varied in length from [Formula: see text] to 24, in intervals of 4 d, where d is the diameter of the cylinders. The analysis was performed under subcritical conditions with Froude numbers [Formula: see text] and bulk Reynolds numbers [Formula: see text]. Results show that the gaps affect the flow statistics at the upstream and downstream proximity of the canopy. The affected zone was [Formula: see text] for the mean flow and [Formula: see text] for the second-order statistics. Dimensionless time-averaged streamwise velocity within the gap exhibited minor variability with gap spacing; however, in-plane turbulent kinetic energy, k, showed a consistent decay rate when normalized with that at [Formula: see text] from the beginning of the gap. The emergent canopy acts as a passive turbulence generator for the gap flow for practical purposes. The streamwise dependence of k follows an exponential trend within [Formula: see text] and transitions to a power-law at [Formula: see text]. The substantially lower maximum values of k within the gap compared to k within the canopy evidence a limitation of gap measurements representative of canopy flow statistics. We present a base framework for estimating representative in-canopy statistics from measurements in the gap. 
    more » « less
  2. We study the problem of covering barrier points by mobile sensors. Each sensor is represented by a point in the plane with the same covering range [Formula: see text] so that any point within distance [Formula: see text] from the sensor can be covered by the sensor. Given a set [Formula: see text] of [Formula: see text] points (called “barrier points”) and a set [Formula: see text] of [Formula: see text] points (representing the “sensors”) in the plane, the problem is to move the sensors so that each barrier point is covered by at least one sensor and the maximum movement of all sensors is minimized. The problem is NP-hard. In this paper, we consider two line-constrained variations of the problem and present efficient algorithms that improve the previous work. In the first problem, all sensors are given on a line [Formula: see text] and are required to move on [Formula: see text] only while the barrier points can be anywhere in the plane. We propose an [Formula: see text] time algorithm for the problem. We also consider the weighted case where each sensor has a weight; we give an [Formula: see text] time algorithm for this case. In the second problem, all barrier points are on [Formula: see text] while all sensors are in the plane but are required to move onto [Formula: see text] to cover all barrier points. We also solve the weighted case in [Formula: see text] time. 
    more » « less
  3. Discrete-particle simulations of bidisperse shear thickening suspensions are reported. The work considers two packing parameters, the large-to-small particle radius ratio ranging from [Formula: see text] (nearly monodisperse) to [Formula: see text], and the large particle fraction of the total solid loading with values [Formula: see text], 0.5, and 0.85. Particle-scale simulations are performed over a broad range of shear stresses using a simulation model for spherical particles accounting for short-range lubrication forces, frictional interaction, and repulsion between particles. The variation of rheological properties and the maximum packing fraction [Formula: see text] with shear stress [Formula: see text] are reported. At a fixed volume fraction [Formula: see text], bidispersity decreases the suspension relative viscosity [Formula: see text], where [Formula: see text] is the suspension viscosity and [Formula: see text] is the suspending fluid viscosity, over the entire range of shear stresses studied. However, under low shear stress conditions, the suspension exhibits an unusual rheological behavior: the minimum viscosity does not occur as expected at [Formula: see text], but instead decreases with further increase of [Formula: see text] to [Formula: see text]. The second normal stress difference [Formula: see text] acts similarly. This behavior is caused by particles ordering into a layered structure, as is also reflected by the zero slope with respect to time of the mean-square displacement in the velocity gradient direction. The relative viscosity [Formula: see text] of bidisperse rate-dependent suspensions can be predicted by a power law linking it to [Formula: see text], [Formula: see text] in both low and high shear stress regimes. The agreement between the power law and experimental data from literature demonstrates that the model captures well the effect of particle size distribution, showing that viscosity roughly collapses onto a single master curve when plotted against the reduced volume fraction [Formula: see text]. 
    more » « less
  4. Meier and Zupan proved that an orientable surface [Formula: see text] in [Formula: see text] admits a tri-plane diagram with zero crossings if and only if [Formula: see text] is unknotted, so that the crossing number of [Formula: see text] is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in [Formula: see text], proving that [Formula: see text], where [Formula: see text] denotes the connected sum of [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text] and [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text]. In addition, we convert Yoshikawa’s table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers. 
    more » « less
  5. null (Ed.)
    We propose an Euler transformation that transforms a given [Formula: see text]-dimensional cell complex [Formula: see text] for [Formula: see text] into a new [Formula: see text]-complex [Formula: see text] in which every vertex is part of the same even number of edges. Hence every vertex in the graph [Formula: see text] that is the [Formula: see text]-skeleton of [Formula: see text] has an even degree, which makes [Formula: see text] Eulerian, i.e., it is guaranteed to contain an Eulerian tour. Meshes whose edges admit Eulerian tours are crucial in coverage problems arising in several applications including 3D printing and robotics. For [Formula: see text]-complexes in [Formula: see text] ([Formula: see text]) under mild assumptions (that no two adjacent edges of a [Formula: see text]-cell in [Formula: see text] are boundary edges), we show that the Euler transformed [Formula: see text]-complex [Formula: see text] has a geometric realization in [Formula: see text], and that each vertex in its [Formula: see text]-skeleton has degree [Formula: see text]. We bound the numbers of vertices, edges, and [Formula: see text]-cells in [Formula: see text] as small scalar multiples of the corresponding numbers in [Formula: see text]. We prove corresponding results for [Formula: see text]-complexes in [Formula: see text] under an additional assumption that the degree of a vertex in each [Formula: see text]-cell containing it is [Formula: see text]. In this setting, every vertex in [Formula: see text] is shown to have a degree of [Formula: see text]. We also present bounds on parameters measuring geometric quality (aspect ratios, minimum edge length, and maximum angle of cells) of [Formula: see text] in terms of the corresponding parameters of [Formula: see text] for [Formula: see text]. Finally, we illustrate a direct application of the proposed Euler transformation in additive manufacturing. 
    more » « less