We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive
We perform pathintegral molecular dynamics (PIMD), ringpolymer MD (RPMD), and classical MD simulations of H
 Award ID(s):
 2112550
 NSFPAR ID:
 10364848
 Publisher / Repository:
 Nature Publishing Group
 Date Published:
 Journal Name:
 Scientific Reports
 Volume:
 12
 Issue:
 1
 ISSN:
 20452322
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract meson muoproduction at COMPASS using 160 GeV/$$\rho ^0$$ ${\rho}^{0}$c polarised and$$ \mu ^{+}$$ ${\mu}^{+}$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$ \mu ^{}$$ ${\mu}^{}$$$c^2$$ ${c}^{2}$ 17.0 GeV/$$< W<$$ $<W<$ , 1.0 (GeV/$$c^2$$ ${c}^{2}$c )$$^2$$ ${}^{2}$ 10.0 (GeV/$$< Q^2<$$ $<{Q}^{2}<$c ) and 0.01 (GeV/$$^2$$ ${}^{2}$c )$$^2$$ ${}^{2}$ 0.5 (GeV/$$< p_{\textrm{T}}^2<$$ $<{p}_{\text{T}}^{2}<$c ) . Here,$$^2$$ ${}^{2}$W denotes the mass of the final hadronic system, the virtuality of the exchanged photon, and$$Q^2$$ ${Q}^{2}$ the transverse momentum of the$$p_{\textrm{T}}$$ ${p}_{\text{T}}$ meson with respect to the virtualphoton direction. The measured nonzero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\rho ^0$$ ${\rho}^{0}$ ) indicate a violation of$$\gamma ^*_T \rightarrow V^{ }_L$$ ${\gamma}_{T}^{\ast}\to {V}_{L}^{}$s channel helicity conservation. Additionally, we observe a dominant contribution of naturalparityexchange transitions and a very small contribution of unnaturalparityexchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a modeldependent way the role of parton helicityflip GPDs in exclusive production.$$\rho ^0$$ ${\rho}^{0}$ 
Abstract Initially, vanadium dioxide seems to be an ideal firstorder phase transition case study due to its deceptively simple structure and composition, but upon closer inspection there are nuances to the driving mechanism of the metalinsulator transition (MIT) that are still unexplained. In this study, a local structure analysis across a bulk powder tungstensubstitution series is utilized to tease out the nuances of this firstorder phase transition. A comparison of the average structure to the local structure using synchrotron xray diffraction and total scattering pairdistribution function methods, respectively, is discussed as well as comparison to bright field transmission electron microscopy imaging through a similar temperatureseries as the local structure characterization. Extended xray absorption fine structure fitting of thin film data across the substitutionseries is also presented and compared to bulk. Machine learning technique, nonnegative matrix factorization, is applied to analyze the total scattering data. The bulk MIT is probed through magnetic susceptibility as well as differential scanning calorimetry. The findings indicate the local transition temperature (
) is less than the average$$T_c$$ ${T}_{c}$ supporting the PeierlsMott MIT mechanism, and demonstrate that in bulk powder and thinfilms, increasing tungstensubstitution instigates local Voxidation through the phase pathway VO$$T_c$$ ${T}_{c}$ V$$_2\, \rightarrow$$ ${}_{2}\phantom{\rule{0ex}{0ex}}\to $ O$$_6$$ ${}_{6}$ V$$_{13} \, \rightarrow$$ ${}_{13}\phantom{\rule{0ex}{0ex}}\to $ O$$_2$$ ${}_{2}$ .$$_5$$ ${}_{5}$ 
Abstract We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loopensemble
for$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ in (4, 8) that is drawn on an independent$$\kappa '$$ ${\kappa}^{\prime}$ LQG surface for$$\gamma $$ $\gamma $ . The results are similar in flavor to the ones from our companion paper dealing with$$\gamma ^2=16/\kappa '$$ ${\gamma}^{2}=16/{\kappa}^{\prime}$ for$$\hbox {CLE}_{\kappa }$$ ${\text{CLE}}_{\kappa}$ in (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\kappa $$ $\kappa $ in terms of stable growthfragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$CLE Percolations ” described the law of interfaces obtained when coloring the loops of a independently into two colors with respective probabilities$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$p and . This description was complete up to one missing parameter$$1p$$ $1p$ . The results of the present paper about CLE on LQG allow us to determine its value in terms of$$\rho $$ $\rho $p and . It shows in particular that$$\kappa '$$ ${\kappa}^{\prime}$ and$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ are related via a continuum analog of the EdwardsSokal coupling between$$\hbox {CLE}_{16/\kappa '}$$ ${\text{CLE}}_{16/{\kappa}^{\prime}}$ percolation and the$$\hbox {FK}_q$$ ${\text{FK}}_{q}$q state Potts model (which makes sense even for nonintegerq between 1 and 4) if and only if . This provides further evidence for the longstanding belief that$$q=4\cos ^2(4\pi / \kappa ')$$ $q=4{cos}^{2}(4\pi /{\kappa}^{\prime})$ and$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ represent the scaling limits of$$\hbox {CLE}_{16/\kappa '}$$ ${\text{CLE}}_{16/{\kappa}^{\prime}}$ percolation and the$$\hbox {FK}_q$$ ${\text{FK}}_{q}$q Potts model whenq and are related in this way. Another consequence of the formula for$$\kappa '$$ ${\kappa}^{\prime}$ is the value of halfplane arm exponents for such divideandcolor models (a.k.a. fuzzy Potts models) that turn out to take a somewhat different form than the usual critical exponents for twodimensional models.$$\rho (p,\kappa ')$$ $\rho (p,{\kappa}^{\prime})$ 
Abstract We provide moment bounds for expressions of the type
where$$(X^{(1)} \otimes \cdots \otimes X^{(d)})^T A (X^{(1)} \otimes \cdots \otimes X^{(d)})$$ ${({X}^{\left(1\right)}\otimes \cdots \otimes {X}^{\left(d\right)})}^{T}A({X}^{\left(1\right)}\otimes \cdots \otimes {X}^{\left(d\right)})$ denotes the Kronecker product and$$\otimes $$ $\otimes $ are random vectors with independent, mean 0, variance 1, subgaussian entries. The bounds are tight up to constants depending on$$X^{(1)}, \ldots , X^{(d)}$$ ${X}^{\left(1\right)},\dots ,{X}^{\left(d\right)}$d for the case of Gaussian random vectors. Our proof also provides a decoupling inequality for expressions of this type. Using these bounds, we obtain new, improved concentration inequalities for expressions of the form .$$\Vert B (X^{(1)} \otimes \cdots \otimes X^{(d)})\Vert _2$$ $\Vert B({X}^{\left(1\right)}\otimes \cdots \otimes {X}^{\left(d\right)}){\Vert}_{2}$ 
Abstract We present the first unquenched latticeQCD calculation of the form factors for the decay
at nonzero recoil. Our analysis includes 15 MILC ensembles with$$B\rightarrow D^*\ell \nu $$ $B\to {D}^{\ast}\ell \nu $ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from$$N_f=2+1$$ ${N}_{f}=2+1$ fm down to 0.045 fm, while the ratio between the light and the strangequark masses ranges from 0.05 to 0.4. The valence$$a\approx 0.15$$ $a\approx 0.15$b andc quarks are treated using the Wilsonclover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavylight meson chiral perturbation theory. Then we apply a modelindependent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint latticeQCD/experiment fit using several experimental datasets to determine the CKM matrix element . We obtain$$V_{cb}$$ ${V}_{\mathrm{cb}}$ . The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall$$\left V_{cb}\right = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{3}$$ $\left({V}_{\mathrm{cb}}\right)=(38.40\pm 0.{68}_{\text{th}}\pm 0.{34}_{\text{exp}}\pm 0.{18}_{\text{EM}})\times {10}^{3}$ , which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict$$\chi ^2\text {/dof} = 126/84$$ ${\chi}^{2}\text{/dof}=126/84$ , which confirms the current tension between theory and experiment.$$R(D^*) = 0.265 \pm 0.013$$ $R\left({D}^{\ast}\right)=0.265\pm 0.013$