skip to main content


Title: Multiphase ISM in the z = 5.7 Hyperluminous Starburst SPT 0346–52
Abstract

With ΣSFR∼ 4200Myr−1kpc−2, SPT 0346–52 (z= 5.7) is the most intensely star-forming galaxy discovered by the South Pole Telescope. In this paper, we expand on previous spatially resolved studies, using ALMA observations of dust continuum, [Nii] 205μm, [Cii] 158μm, [Oi] 146μm, and undetected [Nii] 122μm and [Oi] 63μm emission to study the multiphase interstellar medium (ISM) in SPT 0346–52. We use pixelated, visibility-based lens modeling to reconstruct the source-plane emission. We also model the source-plane emission using the photoionization codecloudyand find a supersolar metallicity system. We calculateTdust= 48.3 K andλpeak= 80μm and see line deficits in all five lines. The ionized gas is less dense than comparable galaxies, withne< 32 cm−3, while ∼20% of the [Cii] 158μm emission originates from the ionized phase of the ISM. We also calculate the masses of several phases of the ISM. We find that molecular gas dominates the mass of the ISM in SPT 0346–52, with the molecular gas mass ∼4× higher than the neutral atomic gas mass and ∼100× higher than the ionized gas mass.

 
more » « less
Award ID(s):
1852617 1715213
NSF-PAR ID:
10365012
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 179
Size(s):
["Article No. 179"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present spatially resolved morphological properties of [CII] 158μm, [OIII] 88μm, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz= 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII] line and UV continuum are compact, the [CII] line is extended up to a radius ofr∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μm, we find an average dust temperature and emissivity index ofTdust=4114+17K andβ=1.70.7+1.1, respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1Myr−1with an obscured fraction of 87%. While the [OIII] line is a good tracer of the SFR, the [CII] line shows deviation from the localL[CII]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII] and [OIII], with significant residuals (∼5σ) in the [OIII] line spectrum after subtracting a single Gaussian model. This suggests a possible origin of the extended [CII] structure from the cooling of hot ionized outflows. The extended [CII] and high-velocity [OIII] emission may both contribute in part to the highL[OIII]/L[CII]ratios recently reported inz> 6 galaxies.

     
    more » « less
  2. Characterizing the physical conditions (density, temperature, ionization state, metallicity, etc) of the interstellar medium is critical to improving our understanding of the formation and evolution of galaxies. In this work, we present a multi-line study of the interstellar medium in the host galaxy of a quasar atz ≈ 6.4, that is, when the universe was 840 Myr old. This galaxy is one of the most active and massive objects emerging from the dark ages and therefore represents a benchmark for models of the early formation of massive galaxies. We used the Atacama Large Millimeter Array to target an ensemble of tracers of ionized, neutral, and molecular gas, namely the following fine-structure lines: [O III] 88 μm, [N II] 122 μm, [C II] 158 μm, and [C I] 370 μm – as well as the rotational transitions of CO(7–6), CO(15–14), CO(16–15), and CO(19–18); OH 163.1 μm and 163.4 μm; along with H2O 3(0,3)–2(1,2), 3(3,1)–4(0,4), 3(3,1)–3(2,2), 4(0,4)–3(1,3), and 4(3,2)–4(2,3). All the targeted fine-structure lines were detected, along with half of the targeted molecular transitions. By combining the associated line luminosities with the constraints on the dust temperature from the underlying continuum emission and predictions from photoionization models of the interstellar medium, we find that the ionized phase accounts for about one-third of the total gaseous mass budget and is responsible for half of the total [C II] emission. This phase is characterized by a high density (n ∼ 180 cm−3) that typical of HII regions. The spectral energy distribution of the photoionizing radiation is comparable to that emitted by B-type stars. Star formation also appears to be driving the excitation of the molecular medium. We find marginal evidence for outflow-related shocks in the dense molecular phase, but not in other gas phases. This study showcases the power of multi-line investigations in unveiling the properties of the star-forming medium in galaxies at cosmic dawn.

     
    more » « less
  3. Abstract

    We investigate the fine-structure [Cii] line at 158μm as a molecular gas tracer by analyzing the relationship between molecular gas mass (Mmol) and [Cii] line luminosity (L[CII]) in 11,125z≃ 6 star-forming, main-sequence galaxies from thesimbasimulations, with line emission modeled by the Simulator of Galaxy Millimeter/Submillimeter Emission. Though most (∼50%–100%) of the gas mass in our simulations is ionized, the bulk (>50%) of the [Cii] emission comes from the molecular phase. We find a sublinear (slope 0.78 ± 0.01)logL[CII]logMmolrelation, in contrast with the linear relation derived from observational samples of more massive, metal-rich galaxies atz≲ 6. We derive a median [Cii]-to-Mmolconversion factor ofα[CII]≃ 18M/L. This is lower than the average value of ≃30M/Lderived from observations, which we attribute to lower gas-phase metallicities in our simulations. Thus, a lower, luminosity-dependent conversion factor must be applied when inferring molecular gas masses from [Cii] observations of low-mass galaxies. For our simulations, [Cii] is a better tracer of the molecular gas than COJ= 1–0, especially at the lowest metallicities, where much of the gas isCO-dark. We find thatL[CII]is more tightly correlated withMmolthan with star formation rate (SFR), and both thelogL[CII]logMmolandlogL[CII]logSFRrelations arise from the Kennicutt–Schmidt relation. Our findings suggest thatL[CII]is a promising tracer of the molecular gas at the earliest cosmic epochs.

     
    more » « less
  4. Abstract We report new Northern Extended Millimeter Array observations of the [C ii ] 158 μ m , [N ii ] 205 μ m , and [O i ] 146 μ m atomic fine structure lines (FSLs) and dust continuum emission of J1148+5251, a z = 6.42 quasar, which probe the physical properties of its interstellar medium (ISM). The radially averaged [C ii ] 158 μ m and dust continuum emission have similar extensions (up to θ = 2.51 − 0.25 + 0.46 arcsec , corresponding to r = 9.8 − 2.1 + 3.3 kpc , accounting for beam convolution), confirming that J1148+5251 is the quasar with the largest [C ii ] 158 μ m -emitting reservoir known at these epochs. Moreover, if the [C ii ] 158 μ m emission is examined only along its NE–SW axis, a significant excess (>5.8 σ ) of [C ii ] 158 μ m emission (with respect to the dust) is detected. The new wide-bandwidth observations enable us to accurately constrain the continuum emission, and do not statistically require the presence of broad [C ii ] 158 μ m line wings that were reported in previous studies. We also report the first detection of the [O i ] 146 μ m and (tentatively) [N ii ] 205 μ m emission lines in J1148+5251. Using FSL ratios of the [C ii ] 158 μ m , [N ii ] 205 μ m , [O i ] 146 μ m , and previously measured [C i ] 369 μ m emission lines, we show that J1148+5251 has similar ISM conditions compared to lower-redshift (ultra)luminous infrared galaxies. CLOUDY modeling of the FSL ratios excludes X-ray-dominated regions and favors photodissociation regions as the origin of the FSL emission. We find that a high radiation field (10 3.5–4.5 G 0 ), a high gas density ( n ≃ 10 3.5–4.5 cm −3 ), and an H i column density of 10 23 cm −2 reproduce the observed FSL ratios well. 
    more » « less
  5. Abstract

    We study the ionization and excitation structure of the interstellar medium in the late-stage gas-rich galaxy merger NGC 6240 using a suite of emission-line maps at ∼25 pc resolution from the Hubble Space Telescope, Keck/NIRC2 with Adaptive Optics, and the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 6240 hosts a superwind driven by intense star formation and/or one or both of two active nuclei; the outflows produce bubbles and filaments seen in shock tracers from warm molecular gas (H22.12μm) to optical ionized gas ([Oiii], [Nii], [Sii], and [Oi]) and hot plasma (FeXXV). In the most distinct bubble, we see a clear shock front traced by high [Oiii]/Hβand [Oiii]/[Oi]. Cool molecular gas (CO(2−1)) is only present near the base of the bubble, toward the nuclei launching the outflow. We interpret the lack of molecular gas outside the bubble to mean that the shock front is not responsible for dissociating molecular gas, and conclude that the molecular clouds are partly shielded and either entrained briefly in the outflow, or left undisturbed while the hot wind flows around them. Elsewhere in the galaxy, shock-excited H2extends at least ∼4 kpc from the nuclei, tracing molecular gas even warmer than that between the nuclei, where the two galaxies’ interstellar media are colliding. A ridgeline of high [Oiii]/Hβemission along the eastern arm aligns with the southern nucleus’ stellar disk minor axis; optical integral field spectroscopy from WiFeS suggests this highly ionized gas is centered at systemic velocity and likely photoionized by direct line of sight to the southern active galactic nucleus.

     
    more » « less