ABSTRACT We present band 6 ALMA observations of a heavily obscured radio-loud (L1.4 GHz = 1025.4 W Hz−1) active galactic nucleus (AGN) candidate at zphot = 6.83 ± 0.06 found in the 1.5 deg2 COSMOS field. The ALMA data reveal detections of exceptionally strong [C ii]158 $$\mu$$m (z[C ii] = 6.8532) and underlying dust continuum emission from this object (COS-87259), where the [C ii] line luminosity, line width, and 158 $$\mu$$m continuum luminosity are comparable to those seen from z ∼ 7 sub-mm galaxies and quasar hosts. The 158 $$\mu$$m continuum detection suggests a total infrared luminosity of $$9\times 10^{12}\, \mathrm{ L}_\odot$$ with corresponding very large obscured star formation rate (1300 M⊙ yr−1) and dust mass ($$2\times 10^9\, \mathrm{ M}_\odot$$). The strong break seen between the VIRCam and IRAC photometry perhaps suggests that COS-87259 is an extremely massive reionization-era galaxy with $$M_\ast \approx 1.7\times 10^{11}\, \mathrm{ M}_\odot$$. Moreover, the MIPS, PACS, and SPIRE detections imply that this object harbours an AGN that is heavily obscured ($$\tau _{_{\mathrm{9.7\,\mu m}}}=2.3$$) with a bolometric luminosity of approximately $$5\times 10^{13}\, \mathrm{ L}_\odot$$. Such a very high AGN luminosity suggests that this object is powered by an ≈1.6 × 10$$^9\, \mathrm{ M}_\odot$$ black hole if accreting near the Eddington limit, and is effectively a highly obscured version of an extremely ultraviolet (UV)-luminous (M1450 ≈ −27.3) z ∼ 7 quasar. Notably, these z ∼ 7 quasars are an exceedingly rare population (∼0.001 deg−2), while COS-87259 was identified over a relatively small field. Future very wide area surveys with e.g. Roman and Euclid have the potential to identify many more extremely red yet UV-bright z ≳ 7 objects similar to COS-87259, providing richer insight into the occurrence of intense obscured star formation and supermassive black hole growth among this population.
more »
« less
Radio and far-IR emission associated with a massive star-forming galaxy candidate at z ≃ 6.8: a radio-loud AGN in the reionization era?
ABSTRACT We report the identification of radio (0.144–3 GHz) and mid-, far-infrared, and sub-mm (24–850μm) emission at the position of one of 41 UV-bright ($$\mathrm{M_{\mathrm{UV}}}^{ }\lesssim -21.25$$) z ≃ 6.6–6.9 Lyman-break galaxy candidates in the 1.5 deg2 COSMOS field. This source, COS-87259, exhibits a sharp flux discontinuity (factor >3) between two narrow/intermediate bands at 9450 and 9700 Å and is undetected in all nine bands blueward of 9600 Å, as expected from a Lyman alpha break at z ≃ 6.8. The full multiwavelength (X-ray through radio) data of COS-87529 can be self-consistently explained by a very massive (M* = 1010.8 M⊙) and extremely red (rest-UV slope β = −0.59) z ≃ 6.8 galaxy with hyperluminous infrared emission (LIR = 1013.6 L⊙) powered by both an intense burst of highly obscured star formation (SFR ≈ 1800 M⊙ yr−1) and an obscured ($$\tau _{_{\mathrm{9.7\mu m}}} = 7.7\pm 2.5$$) radio-loud (L1.4 GHz ≈ 1025.4 W Hz−1) active galactic nucleus (AGN). The radio emission is compact (1.04 ± 0.12 arcsec) and exhibits an ultra-steep spectrum between 1.32 and 3 GHz ($$\alpha =-1.57^{+0.22}_{-0.21}$$) that flattens at lower frequencies ($$\alpha = -0.86^{+0.22}_{-0.16}$$ between 0.144 and 1.32 GHz), consistent with known z > 4 radio galaxies. We also demonstrate that COS-87259 may reside in a significant (11×) galaxy overdensity, as common for systems hosting radio-loud AGN. While we find that low-redshift solutions to the optical + near-infrared data are not preferred, a spectroscopic redshift will ultimately be required to establish the true nature of COS-87259 beyond any doubt. If confirmed to lie at z ≃ 6.8, the properties of COS-87259 would be consistent with a picture wherein AGN and highly obscured star formation activity are fairly common among very massive (M* > 1010 M⊙) reionization-era galaxies.
more »
« less
- Award ID(s):
- 1908284
- PAR ID:
- 10365706
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 512
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 4248-4261
- Size(s):
- p. 4248-4261
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Our understanding of reionization has advanced considerably over the past decade, with several results now demonstrating that the intergalactic medium transitioned from substantially neutral at z = 7 to largely reionized at z = 6. However, little remains known about the sizes of ionized bubbles at z ≳ 7 as well as the galaxy overdensities which drive their growth. Fortunately, rest-ultraviolet (UV) spectroscopic observations offer a pathway towards characterizing these ionized bubbles thanks to the resonant nature of Lyman-alpha photons. In a previous work, we presented Ly α detections from three closely separated Lyman-break galaxies at z ≃ 6.8, suggesting the presence of a large (R > 1 physical Mpc) ionized bubble in the 1.5 deg2 COSMOS field. Here, we present new deep Ly α spectra of 10 UV-bright ($$\mathrm{\mathit{ M}}_{\mathrm{UV}}^{} \le -20.4$$) z ≃ 6.6–6.9 galaxies in the surrounding area, enabling us to better characterize this potential ionized bubble. We confidently detect (S/N > 7) Ly α emission at z = 6.701–6.882 in nine of ten observed galaxies, revealing that the large-scale volume spanned by these sources (characteristic radius R = 3.2 physical Mpc) traces a strong galaxy overdensity (N/〈N〉 ≳ 3). Our data additionally confirm that the Ly α emission of UV-bright galaxies in this volume is significantly enhanced, with 40 per cent (4/10) showing strong Ly α emission (equivalent width >25 Å) compared to the 8–9 per cent found on average at z ∼ 7. The median Ly α equivalent width of our observed galaxies is also ≈2 times that typical at z ∼ 7, consistent with expectations if a very large (R ∼ 3 physical Mpc) ionized bubble is allowing the Ly α photons to cosmologically redshift far into the damping wing before encountering H i.more » « less
-
Abstract We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 <z< 5.9 in the COSMOS field that were [Cii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [Cii] at Early times (ALPINE). We separate these galaxies (“Cii-detected-all”) into lower-redshift (“Cii-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“Cii-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the Cii-detected-all and lz samples at ≳3σ. We find that the infrared–radio correlation of our sample, quantified byqTIR, is lower than the local relation for normal SFGs at a ∼3σsignificance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 <z< 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stackedqTIRs and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lowerqTIRto be a general property of high-redshift SFGs.more » « less
-
ABSTRACT We study the properties of the Sydney University Molonglo Sky Survey (SUMSS) 843 MHz radio active galactic nuclei (AGNs) population in galaxy clusters from two large catalogues created using the Dark Energy Survey (DES): ∼11 800 optically selected RM-Y3 and ∼1000 X-ray selected MARD-Y3 clusters. We show that cluster radio loud AGNs are highly concentrated around cluster centres to $$z$$ ∼ 1. We measure the halo occupation number for cluster radio AGNs above a threshold luminosity, finding that the number of radio AGNs per cluster increases with cluster halo mass as N ∝ M1.2 ± 0.1 (N ∝ M0.68 ± 0.34) for the RM-Y3 (MARD-Y3) sample. Together, these results indicate that radio mode feedback is favoured in more massive galaxy clusters. Using optical counterparts for these sources, we demonstrate weak redshift evolution in the host broad-band colours and the radio luminosity at fixed host galaxy stellar mass. We use the redshift evolution in radio luminosity to break the degeneracy between density and luminosity evolution scenarios in the redshift trend of the radio AGNs luminosity function (LF). The LF exhibits a redshift trend of the form (1 + $$z$$)γ in density and luminosity, respectively, of γD = 3.0 ± 0.4 and γP = 0.21 ± 0.15 in the RM-Y3 sample, and γD = 2.6 ± 0.7 and γP = 0.31 ± 0.15 in MARD-Y3. We discuss the physical drivers of radio mode feedback in cluster AGNs, and we use the cluster radio galaxy LF to estimate the average radio-mode feedback energy as a function of cluster mass and redshift and compare it to the core (<0.1R500) X-ray radiative losses for clusters at $$z$$ < 1.more » « less
-
We present Karl G. Jansky Very Large Array S - (2–4 GHz), C - (4–8 GHz), and X -band (8–12 GHz) continuum observations toward seven radio-loud quasars at z > 5. This sample has previously been found to exhibit spectral peaks at observed-frame frequencies above ∼1 GHz. We also present upgraded Giant Metrewave Radio Telescope (uGMRT) band-2 (200 MHz), band-3 (400 MHz), and band-4 (650 MHz) radio continuum observations toward eight radio-loud quasars at z > 5, selected from our previous GMRT survey, in order to sample their low-frequency synchrotron emission. Combined with archival radio continuum observations, all ten targets show evidence for spectral turnover. The turnover frequencies are ∼1–50 GHz in the rest frame, making these targets gigahertz-peaked-spectrum or high-frequency-peaker candidates. For the nine well-constrained targets with observations on both sides of the spectral turnover, we fit the entire radio spectrum with absorption models associated with synchrotron self-absorption and free-free absorption (FFA). Our results show that FFA in an external inhomogeneous medium can accurately describe the observed spectra for all nine targets, which may indicate an FFA origin for the radio spectral turnover in our sample. As for the complex spectrum of J114657.79+403708.6 at z = 5.00 with two spectral peaks, it may be caused by multiple components (i.e., core-jet) and FFA by the high-density medium in the nuclear region. However, we cannot rule out the spectral turnover origin of variability. Based on our radio spectral modeling, we calculate the radio loudness R 2500 Å for our sample, which ranges from 12 −1 +1 to 674 −51 +61 .more » « less