skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Efficient and low-overhead uplink scheduling for large-scale wireless Internet-of-Things
With the rapid growth of Internet of Things (IoT) applications in recent years, there is a strong need for wireless uplink scheduling algorithms that determine when and which subset of a large number of users should transmit to the central controller. Different from the downlink case, the central controller in the uplink scenario typically has very limited information about the users. On the other hand, collecting all such information from a large number of users typically incurs a prohibitively high communication overhead. This motivates us to investigate the development of an efficient and low-overhead uplink scheduling algorithm that is suitable for large-scale IoT applications with limited amount of coordination from the central controller. Specifically, we first characterize a capacity outer bound subject to the sampling constraint where only a small subset of users are allowed to use control channels for system state reporting and wireless channel probing. Next, we relax the sampling constraint and propose a joint sampling and transmission algorithm, which utilizes full knowledge of channel state distributions and instantaneous queue lengths to achieve the capacity outer bound. The insights obtained from this capacity-achieving algorithm allow us to develop an efficient and low-overhead scheduling algorithm that can strictly satisfy the sampling constraint with asymptotically diminishing throughput loss. Moreover, the throughput performance of our proposed algorithm is independent of the number of users, a highly desirable property in large-scale IoT systems. Finally, we perform extensive simulations to validate our theoretical results.  more » « less
Award ID(s):
1717108 1651947 1657162
PAR ID:
10073227
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the adoption of 5G wireless technology and the Internet-of-Things (IoT) networking, there is a growing interest in serving a dense population of low-complexity devices over shared wireless uplink channels. Different from the traditional scenario of persistent users, in these new networks each user is expected to generate only small bundles of information intermittently. The highly dynamic nature of such demand and the typically low-complexity nature of the user devices calls for a new MAC paradigm that is geared for low-overhead and distributed operation of dynamic users.In this work, we address this need by developing a generic MAC mechanism for estimating the number and coordinating the activation of dynamic users for efficient utilization of the time-frequency resources with minimal public feedback from the common receiver. We fully characterize the throughput and delay performance of our design under a basic threshold-based multi-channel capacity condition, which allows for the use of different channel utilization schemes. Moreover, we consider the Successive-Interference-Cancellation (SIC) Multi-Channel MAC scheme as a specific choice in order to demonstrate the performance of our design for a spectrally-efficient (albeit idealized) scheme. Under the SIC encoding/decoding scheme, we prove that our low-overhead distributed MAC can support maximum throughput, which establishes the efficiency of our design. Under SIC, we also demonstrate how the basic threshold-based success model can be relaxed to be adapted to the performance of a non-ideal success model. 
    more » « less
  2. Tomorrow's massive-scale IoT sensor networks are poised to drive uplink traffic demand, especially in areas of dense deployment. To meet this demand, however, network designers leverage tools that often require accurate estimates of Channel State Information (CSI), which incurs a high overhead and thus reduces network throughput. Furthermore, the overhead generally scales with the number of clients, and so is of special concern in such massive IoT sensor networks. While prior work has used transmissions over one frequency band to predict the channel of another frequency band on the same link, this paper takes the next step in the effort to reduce CSI overhead: predict the CSI of a nearby but distinct link. We propose Cross-Link Channel Prediction (CLCP), a technique that leverages multi-view representation learning to predict the channel response of a large number of users, thereby reducing channel estimation overhead further than previously possible. CLCP's design is highly practical, exploiting existing transmissions rather than dedicated channel sounding or extra pilot signals. We have implemented CLCP for two different Wi-Fi versions, namely 802.11n and 802.11ax, the latter being the leading candidate for future IoT networks. We evaluate CLCP in two large-scale indoor scenarios involving both line-of-sight and non-line-of-sight transmissions with up to 144 different 802.11ax users and four different channel bandwidths, from 20 MHz up to 160 MHz. Our results show that CLCP provides a 2× throughput gain over baseline and a 30% throughput gain over existing prediction algorithms. 
    more » « less
  3. The envisioned Internet of Things (IoT) will involve a massive deployment of objects connected through wireless cells. While commercial solutions are already available, the fundamental limits of such networks in terms of node density, achievable rates or reliability are not known. To address this question, this paper uses a large scale Multiple Access Channel (MAC) to model IoT nodes randomly distributed over the coverage area of a unique base station. The traffic is represented by an information rate spatial density ρ(x). This model, referred to as the Spatial Continuum Multiple Access Channel, is defined as the asymptotic limit of a sequence of discrete MACs. The access capacity region of this channel is defined as the set of achievable information rate spatial densities achievable with vanishing transmission errors and under a sum-power constraint. Simulation results validate the model and show that this fundamental limit theoretically achievable when all nodes transmit simultaneously over an infinite time, may be reached even with a relatively small number of simultaneous transmitters (typically around 20 nodes) which gives credibility to the model. The results also highlight the potential interest of non-orthogonal transmissions for IoT uplink transmissions when compared to an ideal time sharing strategy. 
    more » « less
  4. Unmanned Aerial Vehicle (UAV) Networks have recently attracted great attention as being able to provide convenient and fast wireless connections. One central question is how to allocate a limited number of UAVs to provide wireless services across a large number of regions, where each region has dynamic arriving flows and flows depart from the system once they receive the desired amount of service (referred to as the flow-level dynamic model). In this paper, we propose a MaxWeight-type scheduling algorithm taking into account sharp flow-level dynamics that efficiently redirect UAVs across a large number of regions. However, in our considered model, each flow experiences an independent fading channel and will immediately leave the system once it completes its service, which makes its evolution quite different from the traditional queueing model for wireless networks. This poses significant challenges in our performance analysis. Nevertheless, we incorporate sharp flow-dynamic into the Lyapunov-drift analysis framework, and successfully establish both throughput and heavy-traffic optimality of the proposed algorithm. Extensive simulations are performed to validate the effectiveness of our proposed algorithm. 
    more » « less
  5. Conventional thinking treats the wireless channel as a given constraint. Therefore, wireless network designs to date center on the problem of the endpoint optimization that best utilizes the channel, for example, via rate and power control at the transmitter or sophisticated decoding mechanisms at the receiver. We instead explore whether it is possible to reconfigure the environment itself to facilitate wireless communication. In this work, we instrument the environment with a large array of inexpensive antennas (LAIA) and design algorithms to configure them in real time. Our system achieves this level of programmability through rapid adjustments of an on-board phase shifter in each LAIA device. We design a channel decomposition algorithm to quickly estimate the wireless channel due to the environment alone, which leads us to a process to align the phases of the array elements. Variations of our core algorithm can then optimize wireless channels on the fly for single- and multi-antenna links, as well as nearby networks operating on adjacent frequency bands. We design and deploy a 36-element passive array in a real indoor home environment. Experiments with this prototype show that, by reconfiguring the wireless environment, we can achieve a 24% TCP throughput improvement on average and a median improvement of 51.4% in Shannon capacity over the baseline single-antenna links. Over the baseline multi-antenna links, LAIA achieves an improvement of 12.23% to 18.95% in Shannon capacity. 
    more » « less