Using adiabatic point-particle black hole perturbation theory, we simulate plausible gravitational wave (GW) signatures in two exotic scenarios (i) where a small black hole is emitted by a larger one (‘black hole emission’) and (ii) where a small black hole is emitted by a larger one and subsequently absorbed back (‘black hole absorption’). While such scenarios are forbidden in general relativity (GR), alternative theories (such as certain quantum gravity scenarios obeying the weak gravity conjecture, white holes, and Hawking radiation) may allow them. By leveraging the phenomenology of black hole emission and absorption signals, we introduce straightforward modifications to existing gravitational waveform models to mimic gravitational radiation associated with these exotic events. We anticipate that these (incomplete but) initial simulations, coupled with the adjusted waveform models, will aid in the development of null tests for GR using GWs.
more »
« less
Rotating black holes in Einstein-aether theory
Abstract We introduce new methods to numerically construct for the first time stationary axisymmetric black hole solutions in Einstein-aether theory and study their properties. The key technical challenge is to impose regularity at the spin-2, 1, and 0 wave mode horizons. Interestingly we find the metric horizon, and various wave mode horizons, are not Killing horizons, having null generators to which no linear combination of Killing vectors is tangent, and which spiral from pole to equator or vice versa. Existing phenomenological constraints result in two regions of coupling parameters where the theory is viable and some couplings are large; region I with a large twist coupling and region II with also a (somewhat) large expansion coupling. Currently these constraints do not include tests from strong field dynamics, such as observations of black holes and their mergers. Given the large aether coupling(s) one might expect such dynamics to deviate significantly from general relativity (GR), and hence to further constrain the theory. Here we argue this is not the case, since for these parameter regions solutions exist where the aether is ‘painted’ onto a metric background that is very close to that of GR. This painting for region I is approximately independent of the large twist coupling, and for region II is also approximately independent of the large expansion coupling and normal to a maximal foliation of the spacetime. We support this picture analytically for weak fields, and numerically for rotating black hole solutions, which closely approximate the Kerr metric.
more »
« less
- Award ID(s):
- 2012139
- PAR ID:
- 10366230
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 39
- Issue:
- 12
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 125001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent advancements in observational techniques have led to new tests of the general relativistic predictions for black-hole spacetimes in the strong-field regime. One of the key ingredients for several tests is a metric that allows for deviations from the Kerr solution but remains free of pathologies outside its event horizon. Existing metrics that have been used in the literature often do not satisfy the null convergence condition that is necessary to apply the strong rigidity theorem and would have allowed us to calculate the location of the event horizon by identifying it with an appropriate Killing horizon. This has led earlier calculations of event horizons of parametrically deformed metrics to either follow numerical techniques or simply search heuristically for coordinate singularities. We show that several of these metrics, almost by construction, are circular. We can, therefore, use the weak rigidity and Carter’s rotosurface theorem and calculate algebraically the locations of their event horizons, without relying on expansions or numerical techniques. We apply this approach to a number of parametrically deformed metrics, calculate the locations of their event horizons, and place constraints on the deviation parameters such that the metrics remain regular outside their horizons. We show that calculating the angular velocity of the horizon and the effective gravity there offers new insights into the observational signatures of deformed metrics, such as the sizes and shapes of the predicted black-hole shadows.more » « less
-
Abstract The observation of gravitational waves from compact binary coalescences is a promising tool to test the validity of general relativity (GR) in a highly dynamical strong-field regime. There are now a variety of tests of GR performed on the observed compact binary signals. In this paper, we propose a new test of GR that compares the results of these individual tests. This meta inspiral–merger–ringdown consistency test (IMRCT) involves inferring the final mass and spin of the remnant black hole obtained from the analyses of two different tests of GR and checking for consistency. If there is a deviation from GR, we expect that different tests of GR will recover different values for the final mass and spin, in general. We check the performance of the meta IMRCT using a standard set of null tests used in various gravitational-wave analyses: the original IMRCT, the test infrastructure for GR, the flexible-theory-independent test, and the modified dispersion test. However, the meta IMRCT is applicable to any tests of GR that infer the initial masses and spins or the final mass and spin, including ones that are applied to binary neutron star or neutron star–black hole signals. We apply the meta IMRCT to simulated quasi-circular GR and non-GR binary black hole (BBH) signals as well as to eccentric BBH signals in GR (analysed with quasicircular waveforms). We find that the meta IMRCT gives consistency with GR for the quasi-circular GR signals and picks up a deviation from GR in the other cases, as do other tests. In some cases, the meta IMRCT finds a significant GR deviation for a given pair of tests (and specific testing parameters) while the individual tests do not, showing that it is more sensitive than the individual tests to certain types of deviations. In addition, we also apply this test to a few selected real compact binary signals and find them consistent with GR.more » « less
-
Recent efforts to numerically simulate compact objects in alternative theories of gravity have largely focused on the time-evolution equations. Another critical aspect is the construction of constraint-satisfying initial data with precise control over the properties of the systems under consideration. Here, we augment the extended conformal thin sandwich framework to construct quasistationary initial data for black hole systems in scalar Gauss-Bonnet theory and numerically implement it in the open-source p code. Despite the resulting elliptic system being singular at black hole horizons, we demonstrate how to construct numerical solutions that extend smoothly across the horizon. We obtain quasistationary scalar hair configurations in the test-field limit for black holes with linear/angular momentum as well as for black hole binaries. For isolated black holes, we explicitly show that the scalar profile obtained is stationary by evolving the system in time and compare against previous formulations of scalar Gauss-Bonnet initial data. In the case of the binary, we find that the scalar hair near the black holes can be markedly altered by the presence of the other black hole. The initial data constructed here enable targeted simulations in scalar Gauss-Bonnet simulations with reduced initial transients. Published by the American Physical Society2025more » « less
-
The Carter tensor is a Killing tensor of the Kerr-Newman spacetime, and its existence implies the separability of the wave equation. Nevertheless, the Carter operator is known to commute with the D’Alembertian only in the case of a Ricci-flat metric. We show that, even though the Kerr-Newman spacetime satisfies the non-vacuum Einstein-Maxwell equations, its curvature and electromagnetic tensors satisfy peculiar properties which imply that the Carter operator still commutes with the wave equation. This feature allows to adapt to Kerr-Newman the physical-space analysis of the wave equation in Kerr by Andersson-Blue [4], which avoids frequency decomposition of the solution by precisely making use of the commutation with the Carter operator. We also extend the mathematical framework of physical-space analysis to the case of the Einstein-Maxwell equations on Kerr-Newman spacetime, representing coupled electromagnetic-gravitational perturbations of the rotating charged black hole. The physical-space analysis is crucial in this setting as the coupling of spin- 1 and spin-2 fields in the axially symmetric background prevents the separation in modes as observed by Chandrasekhar [19], and therefore represents an important step towards an analytical proof of the stability of the Kerr-Newman black hole.more » « less
An official website of the United States government

