We derive the equations governing the linear stability of Kerr–Newman spacetime to coupled electromagnetic-gravitational perturbations. The equations generalize the celebrated Teukolsky equation for curvature perturbations of Kerr, and the Regge–Wheeler equation for metric perturbations of Reissner–Nordström. Because of the “apparent indissolubility of the coupling between the spin-1 and spin-2 fields”, as put by Chandrasekhar, the stability of Kerr–Newman spacetime cannot be obtained through standard decomposition in modes. Due to the impossibility to decouple the modes of the gravitational and electromagnetic fields, the equations governing the linear stability of Kerr–Newman have not been previously derived. Using a tensorial approach that was applied to Kerr, we produce a set of generalized Regge–Wheeler equations for perturbations of Kerr–Newman, which are suitable for the study of linearized stability by physical space methods. The physical space analysis overcomes the issue of coupling of spin-1 and spin-2 fields and represents the first step towards an analytical proof of the stability of the Kerr–Newman black hole.
more »
« less
The Carter tensor and the physical-space analysis in perturbations of Kerr–Newman spacetime
The Carter tensor is a Killing tensor of the Kerr-Newman spacetime, and its existence implies the separability of the wave equation. Nevertheless, the Carter operator is known to commute with the D’Alembertian only in the case of a Ricci-flat metric. We show that, even though the Kerr-Newman spacetime satisfies the non-vacuum Einstein-Maxwell equations, its curvature and electromagnetic tensors satisfy peculiar properties which imply that the Carter operator still commutes with the wave equation. This feature allows to adapt to Kerr-Newman the physical-space analysis of the wave equation in Kerr by Andersson-Blue [4], which avoids frequency decomposition of the solution by precisely making use of the commutation with the Carter operator. We also extend the mathematical framework of physical-space analysis to the case of the Einstein-Maxwell equations on Kerr-Newman spacetime, representing coupled electromagnetic-gravitational perturbations of the rotating charged black hole. The physical-space analysis is crucial in this setting as the coupling of spin- 1 and spin-2 fields in the axially symmetric background prevents the separation in modes as observed by Chandrasekhar [19], and therefore represents an important step towards an analytical proof of the stability of the Kerr-Newman black hole.
more »
« less
- PAR ID:
- 10511962
- Publisher / Repository:
- Project Euclid
- Date Published:
- Journal Name:
- Journal of Differential Geometry
- Volume:
- 127
- Issue:
- 1
- ISSN:
- 0022-040X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Black holes are important objects in our understanding of the universe, as they represent the extreme nature of General Relativity. The Kerr–Newman black hole is the most general asymptotically flat black hole solution and its stability properties have long been elusive due to the interaction between gravitational and electromagnetic radiations. We illustrate the main conjectures regarding the stability problem of known black hole solutions and present some recent theorems regarding the evolution of the Kerr–Newman black holes to coupled perturbations.more » « less
-
The image of a supermassive black hole surrounded by an optically-thin, radiatively-inefficient accretion flow, like that observed with the Event Horizon Telescope, is characterized by a bright ring of emission surrounding the black-hole shadow. In the Kerr spacetime this bright ring, when narrow, closely traces the boundary of the shadow and can, with appropriate calibration, serve as its proxy. The present paper expands the validity of this statement by considering two particular spacetime geometries: a solution to the field equations of a modified gravity theory and another that parametrically deviates from Kerr but recovers the Kerr spacetime when its deviation parameters vanish. A covariant, axisymmetric analytic model of the accretion flow based on conservation laws and spanning a broad range of plasma conditions is utilized to calculate synthetic non-Kerr black-hole images, which are then analysed and characterized. We find that in all spacetimes: (i) it is the gravitationally-lensed unstable photon orbit that plays the critical role in establishing the diameter of the rings observed in black-hole images, not the event horizon or the innermost stable circular orbit, (ii) bright rings in these images scale in size with, and encompass, the boundaries of the black-hole shadows, even when deviating significantly from Kerr, and (iii) uncertainties in the physical properties of the accreting plasma introduce subdominant corrections to the relation between the diameter of the image and the diameter of the black-hole shadow. These results provide theoretical justification for using black-hole images to probe and test the spacetimes of supermassive black holes.more » « less
-
null (Ed.)We present fully general relativistic simulations of the quasi-circular inspiral and merger of charged, non-spinning, binary black holes with charge-to-mass ratio λ≤0.3. We discuss the key features that enabled long term and stable evolutions of these binaries. We also present a formalism for computing the angular momentum carried away by electromagnetic waves, and the electromagnetic contribution to black-hole horizon properties. We implement our formalism and present the results for the first time in numerical-relativity simulations. In addition, we compare our full non-linear solutions with existing approximate models for the inspiral and ringdown phases. We show that Newtonian models based on the quadrupole approximation have errors of 20 % - 100 % in key gauge-invariant quantities. On the other hand, for the systems considered, we find that estimates of the remnant black hole spin based on the motion of test particles in Kerr-Newman spacetimes agree with our non-linear calculations to within a few percent. Finally, we discuss the prospects for detecting black hole charge by future gravitational-wave detectors using either the inspiral-merger-ringdown signal or the ringdown signal alone.more » « less
-
A<sc>bstract</sc> It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory.more » « less
An official website of the United States government

