Over the years, honeypots emerged as an important security tool to understand attacker intent and deceive attackers to spend time and resources. Recently, honeypots are being deployed for Internet of things (IoT) devices to lure attackers, and learn their behavior. However, most of the existing IoT honeypots, even the high interaction ones, are easily detected by an attacker who can observe honeypot traffic due to lack of real network traffic originating from the honeypot. This implies that, to build better honeypots and enhance cyber deception capabilities, IoT honeypots need to generate realistic network traffic flows. To achieve this goal, we propose a novel deep learning based approach for generating traffic flows that mimic real network traffic due to user and IoT device interactions.A key technical challenge that our approach overcomes is scarcity of device-specific IoT traffic data to effectively train a generator.We address this challenge by leveraging a core generative adversarial learning algorithm for sequences along with domain specific knowledge common to IoT devices.Through an extensive experimental evaluation with 18 IoT devices, we demonstrate that the proposed synthetic IoT traffic generation tool significantly outperforms state of the art sequence and packet generators in remaining indistinguishable from real traffic even to an adaptive attacker.
more »
« less
Network Traffic Generation: A Survey and Methodology
Network traffic workloads are widely utilized in applied research to verify correctness and to measure the impact of novel algorithms, protocols, and network functions. We provide a comprehensive survey of traffic generators referenced by researchers over the last 13 years, providing in-depth classification of the functional behaviors of the most frequently cited generators. These classifications are then used as a critical component of a methodology presented to aid in the selection of generators derived from the workload requirements of future research.
more »
« less
- Award ID(s):
- 1908974
- PAR ID:
- 10366231
- Date Published:
- Journal Name:
- ACM Computing Surveys
- Volume:
- 55
- Issue:
- 2
- ISSN:
- 0360-0300
- Page Range / eLocation ID:
- 1 to 23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the increase in data transmissions and network traffic over the years, there has been an increase in concerns about protecting network data and information from snooping. With this concern, encryptions are incorporated into network protocols. From wireless protocols to web and phone applications, systems that handle the going and coming of data on the network have applied different kinds of encryptions to protect the confidentiality and integrity of their data transfers. The addition of encryptions poses a new question. What will be observed from encrypted traffic data? This work in progress research delivers an in-depth overview of the ZigBee protocol and analyzes encrypted ZigBee traffic on the ZigBee network. From our analysis, we developed possible strategies for ZigBee traffic analysis. Adopting the proposed strategy makes it possible to detect encrypted traffic activities and patterns of use on the ZigBee network. To the best of our knowledge, this is the first work that tries to understand encrypted ZigBee traffic. By understanding what can be gained from encrypted traffic, this work will benefit the security and privacy of the ZigBee protocol.more » « less
-
Service function chaining (SFC), consisting of a sequence of virtual network functions (VNFs), is the de-facto service provisioning mechanism in VNF-enabled data centers (VDCs). However, for the SFC, the dynamic and diverse virtual machine (VM) traffic must traverse a sequence of VNFs possibly installed at different locations at VDCs, resulting in prolonged network delay, redundant network traffic, and large consumption of cloud resources (e.g., bandwidth and energy). Such adverse effects of the SFC, which we refer to as SFC traffic storm, significantly impede its efficiency and practical implementation.In this paper, we solve the SFC traffic storm problem by proposing AggVNF, a framework wherein the VNFs of an SFC are implemented into one aggregate VNF while multiple instances of aggregate VNFs are available in the VDC. AggVNF adaptively allocates and migrates aggregate VNFs to optimize cloud resources in dynamic VDCs while achieving the load balance of VNFs. At the core of the AggVNF are two graph-theoretical problems that have not been adequately studied. We solve both problems by proposing optimal, approximate, and heuristic algorithms. Using real traffic patterns in Facebook data centers, we show that a) our VNF allocation algorithms yield traffic costs 56.3% smaller than the latest research using the SFC design, b) our VNF migration algorithms yield 84.2% less traffic than the latest research using the SFC design, and c) VNF migration is an effective technique in mitigating dynamic traffic in VDCs, reducing the total traffic cost by up to 24.8%.more » « less
-
Recently, much attention has been devoted to the development of generative network traces and their potential use in supplementing real-world data for a variety of data-driven networking tasks. Yet, the utility of existing synthetic traffic approaches are limited by their low fidelity: low feature granularity, insufficient adherence to task constraints, and subpar class coverage. As effective network tasks are increasingly reliant on raw packet captures, we advocate for a paradigm shift from coarse-grained to fine-grained traffic generation compliant to constraints. We explore this path employing controllable diffusion-based methods. Our preliminary results suggest its effectiveness in generating realistic and fine-grained network traces that mirror the complexity and variety of real network traffic required for accurate service recognition. We further outline the challenges and opportunities of this approach, and discuss a research agenda towards text-to-traffic synthesis.more » « less
-
Understanding network traffic characteristics of IoT devices plays a critical role in improving both the performance and security of IoT devices, including IoT device identification, classification, and anomaly detection. Although a number of existing research efforts have developed machine-learning based algorithms to help address the challenges in improving the security of IoT devices, none of them have provided detailed studies on the network traffic characteristics of IoT devices. In this paper we collect and analyze the network traffic generated in a typical smart homes environment consisting of a set of common IoT (and non-IoT) devices. We analyze the network traffic characteristics of IoT devices from three complementary aspects: remote network servers and port numbers that IoT devices connect to, flow-level traffic characteristics such as flow duration, and packet-level traffic characteristics such as packet inter-arrival time. Our study provides critical insights into the operational and behavioral characteristics of IoT devices, which can help develop more effective security and performance algorithms for IoT devices.more » « less
An official website of the United States government

