skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fault-Tolerant, Distributed Control for Emerging, VSC-Based, Islanded Microgrids—An Approach Based on Simultaneous Passive Fault Detection
Award ID(s):
1808279 1902787
PAR ID:
10366438
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Institute of Electrical and Electronics Engineers
Date Published:
Journal Name:
IEEE Access
Volume:
10
ISSN:
2169-3536
Format(s):
Medium: X Size: p. 10995-11010
Size(s):
p. 10995-11010
Sponsoring Org:
National Science Foundation
More Like this
  1. BLDC motors are widely employed in various applications because of their high efficiency, reliability, and long operational life. For BLDC motors, any electric malfunctions in the commutation signal creation with or without Hall sensors can lead to unexpected vibrations, crashes, and accidents according to application areas. Therefore, fast detection and diagnosis of these faults are crucial for the reliable operation of BLDC motor drive systems. In this paper, a unique approach has been explored for developing fault signatures to detect commutation signal faults accurately and rapidly in the BLDC motor drive system under highly dynamic loads. After the fault detection, a commutation signal is indirectly reconstructed based on healthy commutation signals to continuously drive the motor drive system to avoid serious electrical and mechanical issues due to the faults. The proposed approach and feasibility of the method have been verified both by simulation and experimental studies. The results of the proposed method will significantly improve the accuracy of the commutation signal fault detection and eventually enhance the reliability of the BLDC motor drive. 
    more » « less
  2. Coverage-based fault localization has been extensively studied in the literature due to its effectiveness and lightweightness for real-world systems. However, existing techniques often utilize coverage in an oversimplified way by abstracting detailed coverage into numbers of tests or boolean vectors, thus limiting their effectiveness in practice. In this work, we present a novel coverage-based fault localization technique, Grace, which fully utilizes detailed coverage information with graph-based representation learning. Our intuition is that coverage can be regarded as connective relationships between tests and program entities, which can be inherently and integrally represented by a graph structure: with tests and program entities as nodes, while with coverage and code structures as edges. Therefore, we first propose a novel graph-based representation to reserve all detailed coverage information and fine-grained code structures into one graph. Then we leverage Gated Graph Neural Network to learn valuable features from the graph-based coverage representation and rank program entities in a listwise way. Our evaluation on the widely used benchmark Defects4J (V1.2.0) shows that Grace significantly outperforms state-of-the-art coverage-based fault localization: Grace localizes 195 bugs within Top-1 whereas the best compared technique can at most localize 166 bugs within Top-1. We further investigate the impact of each Grace component and find that they all positively contribute to Grace. In addition, our results also demonstrate that Grace has learnt essential features from coverage, which are complementary to various information used in existing learning-based fault localization. Finally, we evaluate Grace in the cross-project prediction scenario on extra 226 bugs from Defects4J (V2.0.0), and find that Grace consistently outperforms state-of-the-art coverage-based techniques. 
    more » « less