skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Greenstone‐Up Shear Sense at the Margin of the Mt Edgar Dome, East Pilbara Terrane: Implications for Dome and Keel Formation in the Early Earth
Abstract The Paleoarchean Mt Edgar dome in the East Pilbara Terrane has long been studied as an archetypal dome within Archean dome‐and‐keel terranes, but the history of its formation is debated. Kinematic data presented in this study provide new insights into the late‐stage development of the Mt Edgar dome and East Pilbara Terrane. Quartz crystallographic preferred orientation (CPO), optical microstructures, and field structures all indicate that the granite‐greenstone contact of the Mt Edgar dome experienced reverse (greenstone‐up, dome‐down) sense of shear after the formation of the dominant schistosity. This reverse sense of shear is observed at localities along the entire extent of the sheared margin that rings most of the Mt Edgar dome, but is best documented along the southwest margin in the Warrawoona Greenstone Belt. Additionally, quartz CPO data from a dome triple junction outside of the sheared margin dominantly indicate a constrictional strain geometry, consistent with the previous interpretation that this area represents a zone of vertical foundering in a buoyancy‐instability driven system. However, buoyancy‐instability models do not necessarily predict the occurrence of greenstone‐up sense of shear preserved in solid‐state fabrics along the dome margin. Several geologic explanations are considered, including dome expansion or post‐doming deformation. The data are most consistent with explanations that directly relate to dome formation, especially when considered in tandem with recently published structural data from within the Mt Edgar dome. These kinematic data suggest that late dome development occurred in a near‐static crustal environment rather than an extensional or contractional setting.  more » « less
Award ID(s):
2020831 2020057
PAR ID:
10366544
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Tectonics
Volume:
41
Issue:
4
ISSN:
0278-7407
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Paleoarchean East Pilbara Terrane of Western Australia is a dome-and-keel terrane that is often highlighted as recording a vertically convective tectonic regime in the early Earth. In this model, termed ’partial convective overturn’, granitic domes diapirically rose through a dense, foundering mafic supracrustal sequence. The applicability of partial convective overturn to the East Pilbara Terrane and to other Archean dome-and-keel terranes is widely debated and has significant implications for early Earth geodynamics. A critical data gap in the East Pilbara Terrane is the internal structure of the granitic domes. We present field-based, microstructural, and anisotropy of magnetic susceptibility (AMS) data collected within the Mt Edgar dome to understand its internal structure and assess its compatibility with existing dome formation models. Field and microstructural observations suggest that most fabric development occurred under submagmatic and high-temperature solid- state conditions. The AMS results reveal a coherent, dome-wide structural pattern: 1) Sub-vertical lineations plunge radially inward towards the center of the dome and foliations across much of the dome consistently strike northwest; 2) Shallowly plunging lineations define an arch that extends from the center of the dome to the southwest margin; and 3) Migmatitic gneisses, which represent the oldest granitic component of the dome, are folded and flattened against the margin of the dome in two distinct lobes. The structural relationships between rocks of different ages indicate that units of different crystallization ages deformed synchronously during the last major pulse of granitic magmatism. These data are broadly consistent with a vertical tectonics model, and we synthesize our structural results to propose a three-stage diapiric evolution of the Mt Edgar dome. The critical stage of dome development was between 3.3 and 3.2 Ga, when widespread, melt-assisted flow of the deep crust led to the formation of a steep-walled, composite dome. These data suggest that diapiric processes were important for the formation of dome-and-keel terranes in the Paleoarchean. 
    more » « less
  2. Abstract The most recent models for the Mesoproterozoic (ca. 1.5–1.35 Ga) Picuris-Baraboo-Pinware orogeny call on transpression resulting from oblique, diachronous convergence at the southern margin of Laurentia to explain the patterns of deformation and magmatism along this transcontinental belt. The Marqueñas Formation metaconglomerate provides a rare opportunity to directly study the strain and kinematics of deformation within the intraplate Picuris segment of the orogen. Statistical analysis of deformed quartzite pebble and boulder dimensions shows flattening strain at the outcrop to map scale (kilometers to meters). Quartz crystallographic preferred orientation (CPO) records a combination of flattening and non-coaxial shear at the intraclast scale (millimeters to micrometers). Kinematic vorticity axes, determined by crystallographic vorticity analysis on quartzite clasts, are well preserved despite widespread static recrystallization and align with principal strain axes determined from quartz CPO. The compatibility of strain and kinematic vorticity data indicates that flattening was produced in progressive, 3-D general shear. Outcrop-scale and map-scale structural relations link Marqueñas Formation flattening strain to oblique slip, with components of north-directed thrusting and dextral shear, on the Plomo-Pecos shear zone. Quartz flattening CPO yields predominantly crossed-girdle c-axis figures with opening angles of 69°–92° and a mean of 80°. Quartz c-axis opening angle thermometry yields deformation temperatures of 601 ± 50 °C, suggesting that flattening was synchronous with prograde to peak metamorphism during the second phase of deformation (D2) in the Picuris Mountains. We conclude that flattening of the Marqueñas Formation records inclined transpression within the Picuris orogen, consistent with oblique convergence along the Mesoproterozoic Laurentian plate margin. 
    more » « less
  3. We investigate the deformation conditions of coeval mylonites and pseudotachylytes (pst) exposed in the brittle-ductile transition (BDT) in the Black Belt Shear Zone (BBSZ) in the Southern California Batholith using SEM (Scanning Electron Microscope) imaging, and Electron Backscatter Diffraction (EBSD) analysis. We selected four representative samples along a strain gradient of the BBSZ. The BBSZ is a transpressional shear zone developed within hornblende and biotite tonalites and diorites. The shear zone is discontinuous over a ~ 1.5 - 2 km wide zone, and kinematic indicators show oblique top-to-SW, sinistral-reverse to thrust-sense motion. Metamorphic titanite grains aligned within the mylonitic fabric date the deformation to ~ 83 Ma. SEM and EBSD data show mm-thick seams of pst contained within and parallel to mylonitic foliation, and mutually overprinting relationships between brittle and plastic deformation. We observe a brittle overprint of mylonitic fabric in sample 46 and fractured porphyroclasts reworked into mylonitic fabric in samples 45 and 47. EBSD maps from sample 45 and 47 show decreasing modal percentages of hydrous mafic minerals (biotite and hornblende) in the mylonites with proximity to pst seams, suggesting these melted to form pst. In pst seams, there are embayed and rounded/elliptical plagioclase survivor clasts and acicular and aligned biotite microlites parallel to mylonitic fabric (45 & 47). EBSD maps show pst survivor clasts with the same shear sense as the mylonitic fabric, suggesting co-development. Pole figures show weak CPO in hornblende and plagioclase of sample 46. Samples 45 and 47 have no CPO present in plagioclase, however samples 45, 46, and 47 show strong CPO patterns for quartz that are consistent with prism slip. We interpret dislocation creep as the deformation mechanism accommodating plastic deformation in host mylonites. Quartz CPO patterns provide evidence of mylonitic deformation at temperatures ~ 600o C, and the presence of plagioclase survivor clasts as evidence of pst temperatures of ~1100oC. The kinematically consistent sense of shear between pst and host mylonitic fabrics suggests coeval development that indicate shifts from brittle to ductile deformation. Our results suggest periodic pst-generating events involving melting of hydrous mafic minerals aided the development of coeval mylonites and pst in the BDT. 
    more » « less
  4. We present >90 new igneous and metamorphic zircon and titanite petrochronology ages from the eastern Transverse Ranges of the Southern California Batholith (SCB) to investigate magmatic and tectonic processes in the frontal arc during postulated initiation of Late Cretaceous shallow-slab subduction. Our data cover >4000 km2 in the eastern Transverse Ranges and include data from Mesozoic plutons in the Mt. Pinos, Alamo Mountain, San Gabriel Mountain blocks, and the Eastern Peninsular mylonite zone. Igneous zircon data reveal 4 discrete pulses of magmatism at 258-220 Ma, 160-142 Ma, 120-118 Ma, and 90-66 Ma. The latter pulse involved a widespread magmatic surge in the SCB and coincided with garnet-granulite to upper amphibolite-facies metamorphism and partial melting in the lower crust (Cucamonga terrane, eastern San Gabriel Mountains). In this region, metamorphic zircons in gneisses, migmatites and calc-silicates record high-temperature metamorphism from 91 to 74 Ma at 9–7 kbars and 800–730°C. The Late Cretaceous arc flare-up was temporally and spatially associated with the development of a regionally extensive oblique sinistral-reverse shear system that includes from north to south (present-day) the Tumamait shear zone (Mt. Pinos), the Alamo Mountain-Piru Creek shear zone, the Black Belt shear zone (Cucamonga terrane), and the Eastern Peninsular Ranges shear zone. Syn-kinematic, metamorphic titanite ages in the Tumamait shear zone range from 77–74 Ma at 720–700°C, titanites in the Black Belt mylonite zone give an age of 83 Ma, and those in the eastern Peninsular Ranges mylonite zone give ages of 89–86 Ma at 680–670°C. These data suggest a progressive northward younging of ductile shearing at amphibolite- to upper-amphibolite-facies conditions from 88 to 74 Ma, which overlaps with the timing of the Late Cretaceous arc flare-up event. Collectively, these data indicate that arc magmatism, high-temperature metamorphism, and intra-arc contraction were active in the SCB throughout the Late Cretaceous. These observations appear to contradict existing models for the termination of magmatism and refrigeration of the arc due to underthrusting of the conjugate Shatsky rise starting at ca. 88 Ma. We suggest that shallow-slab subduction likely postdates ca. 74 Ma when high-temperature metamorphism ceased in the SCB. 
    more » « less
  5. Abstract In orogens worldwide and throughout geologic time, large volumes of deep continental crust have been exhumed in domal structures. Extension‐driven ascent of bodies of deep, hot crust is a very efficient mechanism for rapid heat and mass transfer from deep to shallow crustal levels and is therefore an important mechanism in the evolution of continents. The dominant rock type in exhumed domes is quartzofeldspathic gneiss (typically migmatitic) that does not record its former high‐pressure (HP) conditions in its equilibrium mineral assemblage; rather, it records the conditions of emplacement and cooling in the mid/shallow crust. Mafic rocks included in gneiss may, however, contain a fragmentary record of a HP history, and are evidence that their host rocks were also deeply sourced. An excellent example of exhumed deep crust that retains a partial HP record is in the Montagne Noire dome, French Massif Central, which contains well‐preserved eclogite (garnet+omphacite+rutile+quartz) in migmatite in two locations: one in the dome core and the other at the dome margin. Both eclogites recordP ~ 1.5 ± 0.2 GPa atT ~ 700 ± 20°C, but differ from each other in whole‐rock and mineral composition, deformation features (shape and crystallographic preferred orientation, CPO), extent of record of prograde metamorphism in garnet and zircon, and degree of preservation of inherited zircon. Rim ages of zircon in both eclogites overlap with the oldest crystallization ages of host gneiss atc.310 Ma, interpreted based on zircon rare earth element abundance in eclogite zircon as the age of HP metamorphism. Dome‐margin eclogite zircon retains a widespread record of protolith age (c.470–450 Ma, the same as host gneiss protolith age), whereas dome‐core eclogite zircon has more scarce preservation of inherited zircon. Possible explanations for differences in the two eclogites relate to differences in the protolith mafic magma composition and history and/or the duration of metamorphic heating and extent of interaction with aqueous fluid, affecting zircon crystallization. Differences in HP deformation fabrics may relate to the position of the eclogite facies rocks relative to zones of transpression and transtension at an early stage of dome development. Regardless of differences, both eclogites experienced HP metamorphism and deformation in the deep crust atc.310 Ma and were exhumed by lithospheric extension—with their host migmatite—near the end of the Variscan orogeny. The deep crust in this region was rapidly exhumed from ~50 to <10 km, where it equilibrated under low‐P/high‐Tconditions, leaving a sparse but compelling record of the deep origin of most of the crust now exposed in the dome. 
    more » « less