skip to main content

Title: The host galaxy and persistent radio counterpart of FRB 20201124A
ABSTRACT

The physical properties of fast radio burst (FRB) host galaxies provide important clues towards the nature of FRB sources. The 16 FRB hosts identified thus far span three orders of magnitude in mass and specific star formation rate, implicating a ubiquitously occurring progenitor object. FRBs localized with ∼arcsecond accuracy also enable effective searches for associated multiwavelength and multi-time-scale counterparts, such as the persistent radio source associated with FRB 20121102A. Here we present a localization of the repeating source FRB 20201124A, and its association with a host galaxy (SDSS J050803.48+260338.0, z = 0.098) and persistent radio source. The galaxy is massive (${\sim}3\times 10^{10}\, \text{M}_{\odot }$), star-forming (few solar masses per year), and dusty. Very Large Array and Very Long Baseline Array observations of the persistent radio source measure a luminosity of 1.2 × 1029 erg s−1 Hz−1, and show that is extended on scales ≳50 mas. We associate this radio emission with the ongoing star formation activity in SDSS J050803.48+260338.0. Deeper, high-resolution optical observations are required to better utilize the milliarcsecond-scale localization of FRB 20201124A and determine the origin of the large dispersion measure (150–220 pc cm−3) contributed by the host. SDSS J050803.48+260338.0 is an order of magnitude more massive than any galaxy or stellar system previously associated with a repeating FRB source, but more » is comparable to the hosts of so far non-repeating FRBs, further building the link between the two apparent populations.

« less
Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10366552
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
513
Issue:
1
Page Range or eLocation-ID:
p. 982-990
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium, which is assumed to dominate the total extragalactic dispersion. While the host galaxy contributions to dispersion measure (DM) appear to be small for most FRBs, in at least one case there is evidence for an extreme magneto-ionic local environment and a compact persistent radio source. Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific star formation rate at a redshift z=0.241±0.001. The estimated host galaxy DM~≈903+72−111~pc~cm−3, nearly an order of magnitude higher than the average of FRB host galaxies, far exceeds the DM contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host galaxy identifications. The dense FRB environment and the association with a compact persistent radio source may point to a distinctive origin or an earlier evolutionary stage for this FRB source.
  2. Abstract We present the localization and host galaxies of one repeating and two apparently nonrepeating fast radio bursts (FRBs). FRB 20180301A was detected and localized with the Karl G. Jansky Very Large Array to a star-forming galaxy at z = 0.3304. FRB20191228A and FRB20200906A were detected and localized by the Australian Square Kilometre Array Pathfinder to host galaxies at z = 0.2430 and z = 0.3688, respectively. We combine these with 13 other well-localized FRBs in the literature, and analyze the host galaxy properties. We find no significant differences in the host properties of repeating and apparently nonrepeating FRBs. FRB hosts are moderately star forming, with masses slightly offset from the star-forming main sequence. Star formation and low-ionization nuclear emission-line region emission are major sources of ionization in FRB host galaxies, with the former dominant in repeating FRB hosts. FRB hosts do not track stellar mass and star formation as seen in field galaxies (more than 95% confidence). FRBs are rare in massive red galaxies, suggesting that progenitor formation channels are not solely dominated by delayed channels which lag star formation by gigayears. The global properties of FRB hosts are indistinguishable from core-collapse supernovae and short gamma-ray bursts hosts, andmore »the spatial offset (from galaxy centers) of FRBs is mostly inconsistent with that of the Galactic neutron star population (95% confidence). The spatial offsets of FRBs (normalized to the galaxy effective radius) also differ from those of globular clusters in late- and early-type galaxies with 95% confidence.« less
  3. Abstract

    The first fast radio burst (FRB) to be precisely localized was associated with a luminous persistent radio source (PRS). Recently, a second FRB/PRS association was discovered for another repeating source of FRBs. However, it is not clear what makes FRBs or PRS or how they are related. We compile FRB and PRS properties to consider the population of FRB/PRS sources. We suggest a practical definition for PRS as FRB associations with luminosity greater than 1029erg s−1Hz−1that are not attributed to star formation activity in the host galaxy. We model the probability distribution of the fraction of FRBs with PRS for repeaters and nonrepeaters, showing there is not yet evidence for repeaters to be preferentially associated with PRS. We discuss how FRB/PRS sources may be distinguished by the combination of active repetition and an excess dispersion measure local to the FRB environment. We use CHIME/FRB event statistics to bound the mean per-source repetition rate of FRBs to be between 25 and 440 yr−1. We use this to provide a bound on the density of FRB-emitting sources in the local universe of between 2.2 × 102and 5.2 × 104Gpc−3assuming a pulsar-like beamwidth for FRB emission. This density implies that PRS maymore »comprise as much as 1% of compact, luminous radio sources detected in the local universe. The cosmic density and phenomenology of PRS are similar to that of the newly discovered, off-nuclear “wandering” active galactic nuclei (AGN). We argue that it is likely that some PRS have already been detected and misidentified as AGN.

    « less
  4. ABSTRACT

    We report on the discovery and localization of fast radio bursts (FRBs) from the MeerTRAP project, a commensal fast radio transient-detection programme at MeerKAT in South Africa. Our hybrid approach combines a coherent search with an average field-of-view (FoV) of 0.4 $\rm deg^{2}$ with an incoherent search utilizing a FoV of ∼1.27 $\rm deg^{2}$ (both at 1284 MHz). Here, we present results on the first three FRBs: FRB 20200413A (DM = 1990.05 pc cm−3), FRB 20200915A (DM = 740.65 pc cm−3), and FRB 20201123A (DM = 433.55 pc cm−3). FRB 20200413A was discovered only in the incoherent beam. FRB 20200915A (also discovered only in the incoherent beam) shows speckled emission in the dynamic spectrum, which cannot be explained by interstellar scintillation in our Galaxy or plasma lensing, and might be intrinsic to the source. FRB 20201123A shows a faint post-cursor burst of about 200 ms after the main burst and warrants further follow-up to confirm whether it is a repeating FRB. FRB 20201123A also exhibits significant temporal broadening, consistent with scattering, by a turbulent medium. The broadening exceeds from what is predicted for the medium along the sightline through our Galaxy. We associate this scattering with the turbulent medium in the environment of the FRB in the host galaxy. Within the approximately 1 arcmin localization region ofmore »FRB 20201123A, we identify one luminous galaxy (r ≈ 15.67; J173438.35-504550.4) that dominates the posterior probability for a host association. The galaxy’s measured properties are consistent with other FRB hosts with secure associations.

    « less
  5. ABSTRACT

    A repeating source of fast radio bursts (FRBs) is recently discovered from a globular cluster of M81. Association with a globular cluster (or other old stellar systems) suggests that strongly magnetized neutron stars, which are the most likely objects responsible for FRBs, are born not only when young massive stars undergo core-collapse, but also by mergers of old white dwarfs. We find that the fractional contribution to the total FRB rate by old stellar populations is at least a few per cent, and the precise fraction can be constrained by FRB searches in the directions of nearby galaxies, both star-forming and elliptical ones. Using very general arguments, we show that the activity time of the M81-FRB source is between 104 and 106 yr, and more likely of the order of 105 yr. The energetics of radio outbursts put a lower limit on the magnetic field strength of 10$^{13}\,$G, and the spin period $\gtrsim 0.2\,$s, thereby ruling out the source being a milli-second pulsar. The upper limit on the persistent X-ray luminosity (provided by Chandra), together with the high FRB luminosity and frequent repetitions, severely constrains (or rules out) the possibility that the M81-FRB is a scaled-up version of giant pulses frommore »Galactic pulsars. Finally, the 50-ns variability time of the FRB light curve suggests that the emission is produced in a compact region inside the neutron star magnetosphere, as it cannot be accounted for when the emission is at distances $\gtrsim 10^{10}\rm \, cm$.

    « less