skip to main content

Title: Pressure-induced shift of effective Ce valence, Fermi energy and phase boundaries in CeOs 4 Sb 12
Abstract

CeOs4Sb12, a member of the skutterudite family, has an unusual semimetallic low-temperatureL-phase that inhabits a wedge-like area of the fieldH—temperatureTphase diagram. We have conducted measurements of electrical transport and megahertz conductivity on CeOs4Sb12single crystals under pressures of up to 3 GPa and in high magnetic fields of up to 41 T to investigate the influence of pressure on the differentHTphase boundaries. While the high-temperature valence transition between the metallicH-phase and theL-phase is shifted to higherTby pressures of the order of 1 GPa, we observed only a marginal suppression of theS-phase that is found below 1 K for pressures of up to 1.91 GPa. High-field quantum oscillations have been observed for pressures up to 3.0 GPa and the Fermi surface of the high-field side of theH-phase is found to show a surprising decrease in size with increasing pressure, implying a change in electronic structure rather than a mere contraction of lattice parameters. We evaluate the field-dependence of the effective masses for different pressures and also reflect on the sample dependence of some of the properties of CeOs4Sb12which appears to be limited more » to the low-field region.

« less
Authors:
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1905636 1810310
Publication Date:
NSF-PAR ID:
10366576
Journal Name:
New Journal of Physics
Volume:
24
Issue:
4
Page Range or eLocation-ID:
Article No. 043044
ISSN:
1367-2630
Publisher:
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The genericity of Arnold diffusion in the analytic category is an open problem. In this paper, we study this problem in the followinga prioriunstable Hamiltonian system with a time-periodic perturbationHε(p,q,I,φ,t)=h(I)+i=1n±12pi2+Vi(qi)+εH1(p,q,I,φ,t),where(p,q)Rn×Tn,(I,φ)Rd×Tdwithn,d⩾ 1,Viare Morse potentials, andɛis a small non-zero parameter. The unperturbed Hamiltonian is not necessarily convex, and the induced inner dynamics does not need to satisfy a twist condition. Using geometric methods we prove that Arnold diffusion occurs for generic analytic perturbationsH1. Indeed, the set of admissibleH1isCωdense andC3open (a fortiori,Cωopen). Our perturbative technique for the genericity is valid in theCktopology for allk∈ [3, ∞) ∪ {∞,ω}.

  2. Abstract

    We use ALMA observations of CO(2–1) in 13 massive (M*≳ 1011M) poststarburst galaxies atz∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, anguLarmomentum, and Evolution (SQuIGGLE) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withMH2109M. Given their high stellar masses, this mass limit corresponds to an average gas fraction offH2MH2/M*7%or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theDn4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support thismore »empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, theSQuIGGLEgalaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations.

    « less
  3. Abstract

    We propose a new model of the spherical symmetric quantum black hole in the reduced phase space formulation. We deparametrize gravity by coupling to the Gaussian dust which provides the material coordinates. The foliation by dust coordinates covers both the interior and exterior of the black hole. After the spherical symmetry reduction, our model is a 1 + 1 dimensional field theory containing infinitely many degrees of freedom. The effective dynamics of the quantum black hole is generated by an improved physical HamiltonianHΔ. The holonomy correction inHΔis implemented by theμ¯-scheme regularization with a Planckian area scale Δ (which often chosen as the minimal area gap in loop quantum gravity). The effective dynamics recovers the semiclassical Schwarzschild geometry at low curvature regime and resolves the black hole singularity with Planckian curvature, e.g.RμνρσRμνρσ∼ 1/Δ2. Our model predicts that the evolution of the black hole at late time reaches the charged Nariai geometry dS2×S2with Planckian radiiΔ. The Nariai geometry is stable under linear perturbations but may be unstable by nonperturbative quantum effects. Our model suggests the existence of quantum tunneling of the Nariai geometry and a scenario of black-hole-to-white-hole transition.

  4. Abstract

    We present the KODIAQ-Z survey aimed to characterize the cool, photoionized gas at 2.2 ≲z≲ 3.6 in 202 Hi-selected absorbers with 14.6 ≤logNHI< 20 that probe the interface between galaxies and the intergalactic medium (IGM). We find that gas with14.6logNHI<20at 2.2 ≲z≲ 3.6 can be metal-rich (−1.6 ≲ [X/H] ≲ − 0.2) as seen in damped Lyαabsorbers (DLAs); it can also be very metal-poor ([X/H] < − 2.4) or even pristine ([X/H] < − 3.8), which is not observed in DLAs but is common in the IGM. For16<logNHI<20absorbers, the frequency of pristine absorbers is about 1%–10%, while for14.6logNHI16absorbers it is 10%–20%, similar to the diffuse IGM. Supersolar gas is extremely rare (<1%) at these redshifts. The factor of several thousand spread from the lowest to highest metallicities and large metallicity variations (a factor of a few to >100) between absorbers separated by less than Δv< 500 km s−1imply that the metals are poorly mixed in14.6logNHI<20gas. We show that these photoionized absorbers contribute to aboutmore »14% of the cosmic baryons and 45% of the cosmic metals at 2.2 ≲z≲ 3.6. We find that the mean metallicity increases withNHi, consistent with what is found inz< 1 gas. The metallicity of gas in this column density regime has increased by a factor ∼8 from 2.2 ≲z≲ 3.6 toz< 1, but the contribution of the14.6logNHI<19absorbers to the total metal budget of the universe atz< 1 is a quarter of that at 2.2 ≲z≲ 3.6. We show that FOGGIE cosmological zoom-in simulations have a similar evolution of [X/H] withNHi, which is not observed in lower-resolution simulations. In these simulations, very metal-poor absorbers with [X/H] < − 2.4 atz∼ 2–3 are tracers of inflows, while higher-metallicity absorbers are a mixture of inflows and outflows.

    « less
  5. Abstract

    We report the temperature dependence of the Yb valence in the geometrically frustrated compoundYbB4from 12 to 300 K using resonant x-ray emission spectroscopy at the YbLα1transition. We find that the Yb valence,v, is hybridized between thev = 2 andv = 3 valence states, increasing fromv=2.61±0.01at 12 K tov=2.67±0.01at 300 K, confirming thatYbB4is a Kondo system in the intermediate valence regime. This result indicates that the Kondo interaction inYbB4is substantial, and is likely to be the reason whyYbB4does not order magnetically at low temperature, rather than this being an effect of geometric frustration. Furthermore, the zero-point valence of the system is extracted from our data and compared with other Kondo lattice systems. The zero-point valence seems to be weakly dependent on the Kondo temperature scale, but not on the valence change temperature scaleTv.