skip to main content

Title: Evidence of Aggregation Dependence of 5°-Scale Tropical Convective Evolution Using a Gross Moist Stability Framework

Spatial aggregation of deep convection and its possible role in larger-scale atmospheric behavior have received growing attention. Here we seek aggregation-correlated statistical properties of convective events in 5° × 5° boxes over the tropical Indian Ocean. Events are identified by box-averaged rainfall exceeding 5 mm day−1at the center of a 4-day time window, and aggregation is estimated by an index [simple convective aggregation index (SCAI)] based on contiguous cold cloud areas and their geometrical distances in infrared imagery. A physical framework using gross moist stability (GMS) helps to interpret relationships between aggregation, box-scale ascent profiles, moist static energy budgets, and time evolution both within composite events and on longer time scales. For a given precipitation rate, more-aggregated events (with fewer and larger cloud objects on average) exhibit a drier area mean, greater horizontal gradient of moisture, more bottom-heavy ascent profile, and a greater prevalence of low-altitude cloud tops, especially for lower rain rates. In the GMS budget, this bottom-heavy ascent implies net energy import into the atmospheric column during the 4-day event composite. Consistently, net energy variations filtered to reveal longer time scales do indeed exhibit more-aggregated rain events in their growth phase than in their flat and decaying phases. More-aggregated scenes also have more drying by analysis than less-aggregated scenes in MERRA-2’s assimilation budgets. This suggests that parameterized convection (lacking any organization effect) is raining out less water than nature’s real, aggregated convection in such scenes.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Page Range / eLocation ID:
p. 1385-1404
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new diagnostic framework is developed and applied to ERA-Interim to quantitatively assess vertical velocity (omega) profiles in the wavenumber–frequency domain. Two quantities are defined with the first two EOF–PC pairs of omega profiles in the tropical ocean: a top-heaviness ratio and a tilt ratio. The top-heaviness and tilt ratios are defined, respectively, as the cospectrum and quadrature spectrum of PC1 and PC2 divided by the power spectrum of PC1. They represent how top-heavy an omega profile is at the convective maximum, and how much tilt omega profiles contain in the spatiotemporal evolution of a wave. The top-heaviness ratio reveals that omega profiles become more top-heavy as the time scale (spatial scale) becomes longer (larger). The MJO has the most top-heavy profile while the eastward inertio-gravity (EIG) and westward inertio-gravity (WIG) waves have the most bottom-heavy profiles. The tilt ratio reveals that the Kelvin, WIG, EIG, and mixed Rossby–gravity (MRG) waves, categorized as convectively coupled gravity waves, have significant tilt in the omega profiles, while the equatorial Rossby (ER) wave and MJO, categorized as slow-moving moisture modes, have less tilt. The gross moist stability (GMS), cloud–radiation feedback, and effective GMS were also computed for each wave. The MJO with the most top-heavy omega profile exhibits high GMS, but has negative effective GMS due to strong cloud–radiation feedbacks. Similarly, the ER wave also exhibits negative effective GMS with a top-heavy omega profile. These results may indicate that top-heavy omega profiles build up more moist static energy via strong cloud–radiation feedbacks, and as a result, are more preferable for the moisture mode instability.

    more » « less
  2. Abstract

    To understand why convection initiation and heavy rain sometimes occur ahead of fronts over South China in the presummer rainy season but sometimes do not, a climatology of 137 fronts is constructed, in which 34% of the fronts exhibit no prefrontal convection initiation (NoPCI), 31% of the fronts exhibit prefrontal convection initiation (PCI), and 35% of the fronts exhibit prefrontal convection initiation and heavy rain (PCI+HR). An anticyclonically curved upper-level jet streak and midtropospheric QG forcing produce synoptic-scale descent for the prefrontal region in NoPCI events, whereas the right-entrance region of a straight upper-level jet streak and forcing for ascent dominate the prefrontal region in PCI and PCI+HR events. Whether prefrontal convection and heavy rain occur is also related to the character of low-level flows. NoPCI features anticyclonic southerly winds, with an environment having low dewpoint throughout the troposphere, unfavorable for convection initiation. However, synoptic circulation of PCI and PCI+HR events favors a broad prefrontal surface low, which determines the greater cyclonic character of airflows in PCI+HR events, in contrast with that of the PCI events. Convective available potential energy is useful in distinguishing NoPCI and PCI events, and the three events have statistically significant differences in precipitable water. Moreover, larger magnitudes of precipitable water and bulk wind shear in PCI+HR events are conducive for prefrontal convection to produce heavy rain compared to those of PCI events. These results indicate the importance of the upper-level forcing on the prefrontal convection initiation, and heavy rain is sensitive to the changes in prefrontal airflow and moisture.

    Significance Statement

    Convection and heavy rain sometimes occur a few hundred kilometers ahead of fronts in the warm air over South China in early summer. To understand atmospheric conditions favoring or inhibiting convection and heavy rain ahead of fronts, we examine 46 fronts without prefrontal convection, 43 fronts with prefrontal convection, and 48 fronts with prefrontal convection and heavy rain. These scenarios have similarities in environmental behaviors but different large-scale conditions that favor or inhibit ascent in the prefrontal area. Specifically, prefrontal heavy rain tends to occur in a very moist environment with a prefrontal surface low. These findings help researchers and operational forecasters better discriminate the subtle conditions that favor or inhibit prefrontal convection and heavy rain over South China.

    more » « less
  3. Abstract

    High‐resolution modeling reveals a tendency for deep convection to spontaneously self‐aggregate from radiative‐convective equilibrium. Self‐aggregated convection takes different forms in nonrotating versus rotating environments, including tropical cyclones (TCs) in the latter. This suggests that self‐aggregation (SA), and the relative roles of the mechanisms that cause it, may undergo a gradual regime shift as the ambient rotation changes. We address this hypothesis using 31 cloud‐resolving model simulations onf‐planes corresponding to latitudes between 0.1° and 20°, spanning a range of weakly rotating environments largely unexplored in prior literature. Simulations are classified into three groups. The first (low‐f, 0.1°–5°) is characterized by the growth of several dry patches. Surface enthalpy flux feedbacks dominate in this initial growth phase, followed by radiative (primarily cloud longwave) effects. Eventually, convection takes the form of either a nonrotating band or a quasi‐circular cluster. In contrast, the 9°–20° (high‐f) group dries less rapidly in early stages, though enhanced surface flux effects form a moist anomaly that undergoes TC genesis. The TC then acts to dry the remainder of the domain. Finally, a set of 6°–8° (medium‐f) simulations fails to fully self‐aggregate, producing convection across most of the domain through the full 100‐day simulation. The combination of relatively weak diabatic feedbacks and a negative advective feedback prevents SA from completing in this group. The advective feedback becomes more negative with increasing rotation, but high‐fsimulations compensate by having sufficiently strong surface flux feedbacks to support TC genesis.

    more » « less
  4. Abstract Moist static energy (MSE) budgets and gross moist stability (GMS) have been widely used as a diagnostic tool to study the evolution of moisture and convection at different time scales. However, use of GMS is limited at shorter time scales because many points in the tropics have close-to-zero large-scale vertical motion at a given time. This is particularly true in the case of convective life cycles, which have been shown to exist with noise-like ubiquity throughout the tropics at intraseasonal time scales. This study proposes a novel phase angle–based framework as a process-level diagnostic tool to study the MSE budgets during these cycles. Using the GMS phase plane, a phase angle parameter is defined, which converts the unbound GMS into a finite ranged variable. The study finds that the convective life cycles are closely linked to evolution of moisture and effectively behave as moisture recharge–discharge cycles. Convective cycles in different datasets are studied using TOGA COARE, a mix of different satellite products and ERA-Interim. Analysis of the MSE budget reveals that the cyclic behavior is a result of transitions between wet and dry equilibrium states and is similar across different regions. Further, vertical and horizontal advection of MSE are found to act as the primary drivers behind this variability. In contrast, nonlinearities in the radiative and surface flux feedbacks are found to resist the convective evolution. A linearized model consistent with moisture mode dynamics is able to replicate the recharge–discharge cycle variability in TOGA COARE data. Significance Statement In the tropics, variability of moisture and rainfall are closely linked to each other. Through this study we aim to better understand the evolution of moisture in observed daily time series data. We present a novel phase angle–based diagnostic tool to represent and study the energy budget of the system at this time resolution. Our results suggest that similar processes and mechanisms are relevant across different regions and at different scales in the tropics with moisture dynamics being important for these processes. Further, a key role is played by the energy transport associated with the large-scale circulation that drives moisture evolution in a cyclic pattern. 
    more » « less
  5. Abstract

    Disentangling the response of tropical convective updrafts to enhanced aerosol concentrations has been challenging. Leading theories for explaining the influence of aerosol concentrations on tropical convection are based on the dynamical response of convection to changes in cloud microphysics, neglecting possible changes in the environment. In recent years, global convection‐permitting models (GCPM) have been developed to circumvent problems arising from imposing artificial scale separation on physical processes associated with deep convection. Here, we use a global model in the convective gray zone that partially simulates deep convection to investigate how enhanced concentrations of aerosols that act as cloud condensate nuclei (CCN) impact tropical convection features by modulating the convection‐circulation interaction. Results from a pair of idealized non‐rotating radiative‐convective equilibrium simulations show that the enhanced CCN concentration leads to weaker large‐scale circulation, the closeness of deep convective systems to the moist cluster edges, and more mid‐level cloud water at an equilibrium state in which convective self‐aggregation occurred. Correspondingly, the enhanced CCN concentration modulates how the physical processes that support or oppose convective aggregation maintain the aggregated state at equilibrium. Overall, the enhanced CCN concentration facilitates the development of deep convection in a drier environment but reduces mean precipitation. Our results emphasize the importance of allowing atmospheric phenomena to evolve continuously across spatial and temporal scales in simulations when investigating the response of tropical convection to changes in cloud microphysics.

    more » « less