skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence of Aggregation Dependence of 5°-Scale Tropical Convective Evolution Using a Gross Moist Stability Framework
Abstract Spatial aggregation of deep convection and its possible role in larger-scale atmospheric behavior have received growing attention. Here we seek aggregation-correlated statistical properties of convective events in 5° × 5° boxes over the tropical Indian Ocean. Events are identified by box-averaged rainfall exceeding 5 mm day−1at the center of a 4-day time window, and aggregation is estimated by an index [simple convective aggregation index (SCAI)] based on contiguous cold cloud areas and their geometrical distances in infrared imagery. A physical framework using gross moist stability (GMS) helps to interpret relationships between aggregation, box-scale ascent profiles, moist static energy budgets, and time evolution both within composite events and on longer time scales. For a given precipitation rate, more-aggregated events (with fewer and larger cloud objects on average) exhibit a drier area mean, greater horizontal gradient of moisture, more bottom-heavy ascent profile, and a greater prevalence of low-altitude cloud tops, especially for lower rain rates. In the GMS budget, this bottom-heavy ascent implies net energy import into the atmospheric column during the 4-day event composite. Consistently, net energy variations filtered to reveal longer time scales do indeed exhibit more-aggregated rain events in their growth phase than in their flat and decaying phases. More-aggregated scenes also have more drying by analysis than less-aggregated scenes in MERRA-2’s assimilation budgets. This suggests that parameterized convection (lacking any organization effect) is raining out less water than nature’s real, aggregated convection in such scenes.  more » « less
Award ID(s):
1917328
PAR ID:
10367135
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
79
Issue:
5
ISSN:
0022-4928
Page Range / eLocation ID:
p. 1385-1404
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Moist static energy (MSE) budgets and gross moist stability (GMS) have been widely used as a diagnostic tool to study the evolution of moisture and convection at different time scales. However, use of GMS is limited at shorter time scales because many points in the tropics have close-to-zero large-scale vertical motion at a given time. This is particularly true in the case of convective life cycles, which have been shown to exist with noise-like ubiquity throughout the tropics at intraseasonal time scales. This study proposes a novel phase angle–based framework as a process-level diagnostic tool to study the MSE budgets during these cycles. Using the GMS phase plane, a phase angle parameter is defined, which converts the unbound GMS into a finite ranged variable. The study finds that the convective life cycles are closely linked to evolution of moisture and effectively behave as moisture recharge–discharge cycles. Convective cycles in different datasets are studied using TOGA COARE, a mix of different satellite products and ERA-Interim. Analysis of the MSE budget reveals that the cyclic behavior is a result of transitions between wet and dry equilibrium states and is similar across different regions. Further, vertical and horizontal advection of MSE are found to act as the primary drivers behind this variability. In contrast, nonlinearities in the radiative and surface flux feedbacks are found to resist the convective evolution. A linearized model consistent with moisture mode dynamics is able to replicate the recharge–discharge cycle variability in TOGA COARE data. Significance Statement In the tropics, variability of moisture and rainfall are closely linked to each other. Through this study we aim to better understand the evolution of moisture in observed daily time series data. We present a novel phase angle–based diagnostic tool to represent and study the energy budget of the system at this time resolution. Our results suggest that similar processes and mechanisms are relevant across different regions and at different scales in the tropics with moisture dynamics being important for these processes. Further, a key role is played by the energy transport associated with the large-scale circulation that drives moisture evolution in a cyclic pattern. 
    more » « less
  2. Abstract An energy budget combining atmospheric moist static energy (MSE) and upper ocean heat content (OHC) is used to examine the processes impacting day-to-day convective variability in the tropical Indian and western Pacific Oceans. Feedbacks arising from atmospheric and oceanic transport processes, surface fluxes, and radiation drive the cyclical amplification and decay of convection around suppressed and enhanced convective equilibrium states, referred to as shallow and deep convective discharge–recharge (D–R) cycles, respectively. The shallow convective D–R cycle is characterized by alternating enhancements of shallow cumulus and stratocumulus, often in the presence of extensive cirrus clouds. The deep convective D–R cycle is characterized by sequential increases in shallow cumulus, congestus, narrow deep precipitation, wide deep precipitation, a mix of detached anvil and altostratus and altocumulus, and once again shallow cumulus cloud types. Transitions from the shallow to deep D–R cycle are favored by a positive “column process” feedback, while discharge of convective instability and OHC by mesoscale convective systems (MCSs) contributes to transitions from the deep to shallow D–R cycle. Variability in the processes impacting MSE is comparable in magnitude to, but considerably more balanced than, variability in the processes impacting OHC. Variations in the quantity of atmosphere–ocean coupled static energy (MSE + OHC) result primarily from atmospheric and oceanic transport processes, but are mainly realized as changes in OHC. MCSs are unique in their ability to rapidly discharge both lower-tropospheric convective instability and OHC. 
    more » « less
  3. Abstract The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations. 
    more » « less
  4. Abstract We present preliminary results from the field program Organization of Tropical East Pacific Convection (OTREC), with measurements during August and September of 2019 using the NSF/NCAR Gulfstream V over the tropical East Pacific and Southwest Caribbean. We found that active convection in this region has predominantly bottom‐heavy vertical mass fluxes, while decaying systems exhibit top‐heavy fluxes characteristic of stratiform rain regions. As in other regions that have been studied, a strong anti‐correlation exists between the low to mid‐level moist convective instability and the column relative humidity or saturation fraction. Finally, the characteristics of convection as a function of latitude differ greatly between the Southwest Caribbean and Colombian Pacific coast on one hand, and the intertropical convergence zone to the west. In particular, the strongest convection in the former is to the south, while it is to the north in the latter, in spite of similar latitudinal sea surface temperature distributions. 
    more » « less
  5. Abstract High‐resolution modeling reveals a tendency for deep convection to spontaneously self‐aggregate from radiative‐convective equilibrium. Self‐aggregated convection takes different forms in nonrotating versus rotating environments, including tropical cyclones (TCs) in the latter. This suggests that self‐aggregation (SA), and the relative roles of the mechanisms that cause it, may undergo a gradual regime shift as the ambient rotation changes. We address this hypothesis using 31 cloud‐resolving model simulations onf‐planes corresponding to latitudes between 0.1° and 20°, spanning a range of weakly rotating environments largely unexplored in prior literature. Simulations are classified into three groups. The first (low‐f, 0.1°–5°) is characterized by the growth of several dry patches. Surface enthalpy flux feedbacks dominate in this initial growth phase, followed by radiative (primarily cloud longwave) effects. Eventually, convection takes the form of either a nonrotating band or a quasi‐circular cluster. In contrast, the 9°–20° (high‐f) group dries less rapidly in early stages, though enhanced surface flux effects form a moist anomaly that undergoes TC genesis. The TC then acts to dry the remainder of the domain. Finally, a set of 6°–8° (medium‐f) simulations fails to fully self‐aggregate, producing convection across most of the domain through the full 100‐day simulation. The combination of relatively weak diabatic feedbacks and a negative advective feedback prevents SA from completing in this group. The advective feedback becomes more negative with increasing rotation, but high‐fsimulations compensate by having sufficiently strong surface flux feedbacks to support TC genesis. 
    more » « less