skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Near-infrared Look at AGN Feedback in Bulgeless Galaxies
Abstract While it is generally believed that supermassive black holes (SMBHs) lie in most galaxies with bulges, few SMBHs have been confirmed in bulgeless galaxies. Identifying such a population could provide important insights to the BH seed population and secular BH growth. To this end, we obtained near-infrared (NIR) spectroscopic observations of a sample of low-redshift bulgeless galaxies with mid-infrared colors suggestive of active galactic nuclei (AGNs). We find additional evidence of AGN activity (such as coronal lines and broad permitted lines) in 69% (9/13) of the sample, demonstrating that mid-infrared selection is a powerful tool to detect AGNs. More than half of the galaxies with confirmed AGN activity show fast outflows in [Oiii] in the optical and/or [Sivi] in the NIR, with the latter generally having much faster velocities that are also correlated to their spatial extent. We are also able to obtain virial BH masses for some targets and find they fall within the scatter of other late-type galaxies in theMBH–Mstellarrelation. The fact that they lack a significant bulge component indicates that secular processes, likely independent of major mergers, grew these BHs to supermassive sizes. Finally, we analyze the rotational gas kinematics and find two notable exceptions: two AGN hosts with outflows that appear to be rotating faster than expected. There is an indication that these two galaxies have stellar masses significantly lower than expected from their dark matter halo masses. This, combined with the observed AGN activity and strong gas outflows, may be evidence of the effects of AGN feedback.  more » « less
Award ID(s):
1945310 1817233
PAR ID:
10367739
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
931
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 69
Size(s):
Article No. 69
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The M BH – σ ⋆ relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation. Aims. In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the M BH – σ ⋆ relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio. Methods. Supermassive black hole masses ( M BH ) were derived from the broad-line-based relations for H α , H β , and Pa β emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion ( σ ⋆ ) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. Results. The H α -based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log M BH  ≤ 7.75 M ⊙ and the σ ⋆CaT estimates range between 73 ≤  σ ⋆CaT  ≤ 227 km s −1 . From the so-constructed M BH  −  σ ⋆ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. Conclusions. We find that our sample of local luminous AGNs is consistent with the M BH – σ ⋆ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion. 
    more » « less
  2. Abstract The discovery over the last several decades of low- and moderate-luminosity active galactic nuclei (AGNs) in disk-dominated galaxies—which show no “classical” bulges—suggests that secular mechanisms represent an important growth pathway for supermassive black holes in these systems. We present new follow-up NuSTAR observations of the optically elusive AGNs in two bulgeless galaxies, NGC 4178 and J0851+3926. Galaxy NGC 4178 was originally reported as hosting an AGN based on the detection of [Nev] mid-infrared emission detected by Spitzer, and based on Chandra X-ray imaging, it has since been argued to host either a heavily obscured AGN or a supernova remnant. Galaxy J0851+3926 was originally identified as an AGN based on its Wide-Field Infrared Survey Explorer mid-IR colors, and follow-up near-infrared spectroscopy previously revealed a hidden broad-line region, offering compelling evidence for an optically elusive AGN. Neither AGN is detected within the new NuSTAR imaging, and we derive upper limits on the hard X-ray 10–24 keV fluxes of <7.41 × 10−14and <9.40 × 10−14erg cm−2s−1for the AGNs in NGC 4178 and J0851+3926, respectively. If these nondetections are due to large absorbing columns along the line of sight, the nondetections in NGC 4178 and J0851+3926 could be explained with column densities of log(NH/cm2) > 24.2 and 24.1, respectively. The nature of the nuclear activity in NGC 4178 remains inconclusive; it is plausible that the [Nev] traces a period of higher activity in the past, but that the AGN is relatively quiescent now. The nondetection in J0851+3926 and multiwavelength properties are consistent with the AGN being heavily obscured. 
    more » « less
  3. Abstract We present a sample of 398 galaxies with ionized gas outflow signatures in their spectra from the Galaxy and Mass Assembly Survey Data Release 4, including 45 low-mass galaxies with stellar massesM* < 1010M. We assemble our sample by systematically searching for the presence of a second velocity component in the [O iii]λλ4959, 5007 doublet emission line in 39,612 galaxies with redshiftsz < 0.3. The host galaxies are classified using the Baldwin–Phillips–Terlevich diagram, with ~89% identified as active galactic nuclei (AGNs) and composites and 11% as star-forming (SF) galaxies. The outflows are typically faster in AGNs with a median velocity of 936 km s−1compared to 655 km s−1in the SF objects. Of particular interest are the 45 galaxies in the low-mass range, of which a third are classified as AGNs/composites. The outflows from the low-mass AGNs are also faster and more blueshifted compared to those in the low-mass SF galaxies. This indicates that black hole outflows can affect host galaxies in the low-mass range and that AGN feedback in galaxies withM* < 1010Mshould be considered in galaxy evolution models. 
    more » « less
  4. Abstract We study the black hole mass–host galaxy stellar mass relation,MBH–M*, for a sample of 706z ≲ 1.5 andi ≲ 24 optically variable active galactic nuclei (AGNs) in three Dark Energy Survey (DES) Deep Fields: C3, X3, E2, which partially cover Chandra Deep Field-South, XMM Large Scale Structure survey, and European Large Area ISO Survey, respectively. The parent sample was identified by optical variability from the DES supernova survey program imaging. Using publicly available spectra and photometric catalogs, we consolidate their spectroscopic redshifts, estimate their black hole masses using broad line widths and luminosities, and obtain improved stellar masses using spectral energy distribution fitting from X-ray to mid-infrared wavelengths. Our results confirm previous work from Hyper-Suprime Camera imaging that variability searches with deep, high-precision photometry can reliably identify AGNs in low-mass galaxies up toz ∼ 1. However, we find that the hosted black holes are more massive than predicted by the local AGN relation, fixing host galaxy stellar mass. Instead,z ∼ 0.1–1.5 variability-selected AGNs lie in between theMBH–M*relation for local inactive early-type galaxies and local active galaxies. This result agrees with most previous studies of theMBH–M*relation for AGNs at similar redshifts, regardless of the selection technique. We demonstrate that studies of variability-selected AGN provide critical insights into the low-mass end of theMBH–M*relation, shedding light on the occupation fraction of that provides constraints on early black hole seeding mechanisms and self-regulated feedback processes during their growth and coevolution with their hosts. 
    more » « less
  5. Abstract We investigate the relation between black hole (BH) mass and bulge stellar mass for a sample of 117 local (z∼ 0) galaxies hosting low-luminosity, broad-line active galactic nuclei (AGNs). Our sample comes from Reines & Volonteri, who found that, for a given total stellar mass, these AGNs have BH masses more than an order of magnitude smaller than those in early-type galaxies with quiescent BHs. Here, we aim to determine whether or not this AGN sample falls on the canonical BH-to-bulge mass relation by utilizing bulge–disk decompositions and determining bulge stellar masses using color-dependent mass-to-light ratios. We find that our AGN sample remains offset by more than an order of magnitude from theMBH–Mbulgerelation defined by early-type galaxies with dynamically detected BHs. We caution that using canonical BH-to-bulge mass relations for galaxies other than ellipticals and bulge-dominated systems may lead to highly biased interpretations. This work bears directly on predictions for gravitational-wave detections and cosmological simulations that are tied to the local BH-to-bulge mass relations. 
    more » « less