skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Tackling the Unique Challenges of Low-frequency Solar Polarimetry with the Square Kilometre Array Low Precursor: The Algorithm
Abstract

Coronal magnetic fields are well known to be one of the crucial parameters defining coronal physics and space weather. However, measuring the global coronal magnetic fields remains challenging. The polarization properties of coronal radio emissions are sensitive to coronal magnetic fields. While they can prove to be useful probes of coronal and heliospheric magnetic fields, their usage has been limited by technical and algorithmic challenges. We present a robust algorithm for precise polarization calibration and imaging of low-radio frequency solar observations and demonstrate it on data from the Murchison Widefield Array, a Square Kilometre Array (SKA) precursor. This algorithm is based on theMeasurement Equationframework, which forms the basis of all modern radio interferometric calibration and imaging. It delivers high-dynamic-range and high-fidelity full-Stokes solar radio images with instrumental polarization leakages <1%, on par with general astronomical radio imaging, and represents the state of the art. Opening up this rewarding, yet unexplored, phase space will enable multiple novel science investigations and offer considerable discovery potential. Examples include detection of low-level circular polarization from thermal coronal emission to estimate large-scale quiescent coronal fields; polarization of faint gyrosynchrotron emissions from coronal mass ejections for robust estimation of plasma parameters; and detection of the first-ever linear polarization at these frequencies. This method has been developed with the SKA in mind and will enable a new era of high-fidelity spectropolarimetric snapshot solar imaging at low radio frequencies.

 
more » « less
PAR ID:
10368002
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
932
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 110
Size(s):
Article No. 110
Sponsoring Org:
National Science Foundation
More Like this
  1. The dynamics and the structure of the solar corona are determined by its magnetic field. Measuring coronal magnetic fields is, however, extremely hard. The polarization of low-frequency radio emissions has long been recognized as one of the few effective observational probes of magnetic fields in the mid and high corona. However, the extreme intrinsic variability of this emission, the limited ability of most of the available existing instrumentation (until recently) to capture it, and the technical challenges involved have all contributed to its use being severely limited. The high dynamic-range spectropolarimetric snapshot imaging capability that is needed for radio coronal magnetography is now within reach. This has been enabled by the confluence of data from the Murchison Widefield Array (MWA), a Square Kilometre Array (SKA) precursor, and our unsupervised and robust polarization calibration and imaging software pipeline dedicated to the Sun—Polarimetry using the Automated Imaging Routine for Compact Arrays of the Radio Sun (P-AIRCARS). Here, we present the architecture and implementation details of P-AIRCARS. Although the present implementation of P-AIRCARS is tuned to the MWA, the algorithm itself can easily be adapted for future arrays, such as SKA1-Low. We hope and expect that P-AIRCARS will enable exciting new science with instruments like the MWA, and that it will encourage the wider use of radio imaging in the larger solar physics community.

     
    more » « less
  2. ABSTRACT

    Solar radio emission at low frequencies (<1 GHz) can provide valuable information on processes driving flares and coronal mass ejections (CMEs). Radio emission has been detected from active M dwarf stars, suggestive of much higher levels of activity than previously thought. Observations of active M dwarfs at low frequencies can provide information on the emission mechanism for high energy flares and possible stellar CMEs. Here, we conducted two observations with the Australian Square Kilometre Array Pathfinder Telescope totalling 26 h and scheduled to overlap with the Transiting Exoplanet Survey Satellite Sector 36 field, utilizing the wide fields of view of both telescopes to search for multiple M dwarfs. We detected variable radio emission in Stokes I centred at 888 MHz from four known active M dwarfs. Two of these sources were also detected with Stokes V circular polarization. When examining the detected radio emission characteristics, we were not able to distinguish between the models for either electron cyclotron maser or gyrosynchrotron emission. These detections add to the growing number of M dwarfs observed with variable low-frequency emission.

     
    more » « less
  3. Energy stored in the magnetic field in the solar atmosphere above active regions is a key driver of all solar activity (e.g., solar flares and coronal mass ejections), some of which can affect life on Earth. Radio observations provide a unique diagnostic of the coronal magnetic fields that make them a critical tool for the study of these phenomena, using the technique of broadband radio imaging spectropolarimetry. Observations with the ngVLA will provide unique observations of coronal magnetic fields and their evolution, key inputs and constraints for MHD numerical models of the solar atmosphere and eruptive processes, and a key link between lower layers of the solar atmosphere and the heliosphere. In doing so they will also provide practical "research to operations" guidance for space weather forecasting. 
    more » « less
  4. As of now the knowledge obtained on the extrasolar planetary magnetic fields is still small compared to what is known of the magnetic fields composed in our solar system. Planets with magnetic fields radiate in the radio band. Specifically, Auroral Kilometric radiation (AKR) originates from cyclotron emission of electrons orbiting the planet's magnetic field lines. In this project, we investigate the possibility of detecting the AKR emission of Earth-like exoplanets. We collect information on detected Earth-like exoplanets from NASA's exoplanet archive data. Assuming they have the same AKR emission as Earth, we calculate the detection probability of this emission using the Square Kilometric Array (SKA) radio telescope. 
    more » « less
  5. Exoplanets' magnetic fields can help determine their interior structure, which is otherwise difficult to study. Additionally, the knowledge of exoplanets' magnetic fields can shed light on the stability of their atmospheres. Solar system planets with a magnetic field emit Auroral Kilometric Radiation (AKR) due to the cyclotron radiation of electrons orbiting the planet's magnetic field lines. In this project, we investigate the probability of detecting AKR emission of Jupiter-like exoplanets. To do so, we collect information on detected Jupiter-like exoplanets from NASA's exoplanet archive data. Assuming they have the same AKR emission as Jupiter, we calculate the detection probability of this emission using the Square Kilometer Array (SKA) radio telescope. 
    more » « less