skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shocks in the stacked Sunyaev-Zel’dovich profiles of clusters II: Measurements from SPT-SZ +  Planck Compton- y map
ABSTRACT We search for the signature of cosmological shocks in stacked gas pressure profiles of galaxy clusters using data from the South Pole Telescope (SPT). Specifically, we stack the latest Compton-y maps from the 2500 deg2 SPT-SZ survey on the locations of clusters identified in that same data set. The sample contains 516 clusters with mean mass $$\langle M_{\rm 200m}\rangle = 10^{14.9} \, {\rm M}_\odot$$ and redshift 〈z〉 = 0.55. We analyse in parallel a set of zoom-in hydrodynamical simulations from the three hundred project. The SPT-SZ data show two features: (i) a pressure deficit at R/R200m = 1.08 ± 0.09, measured at 3.1σ significance and not observed in the simulations, and; (ii) a sharp decrease in pressure at R/R200m = 4.58 ± 1.24 at 2.0σ significance. The pressure deficit is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions, and the second feature is consistent with accretion shocks seen in previous studies. We split the cluster sample by redshift and mass, and find both features exist in all cases. There are also no significant differences in features along and across the cluster major axis, whose orientation roughly points towards filamentary structure. As a consistency test, we also analyse clusters from the Planck and Atacama Cosmology Telescope Polarimeter surveys and find quantitatively similar features in the pressure profiles. Finally, we compare the accretion shock radius ($$R_{\rm sh,\, acc}$$) with existing measurements of the splashback radius (Rsp) for SPT-SZ and constrain the lower limit of the ratio, $$R_{\rm sh,\, acc}/R_{\rm sp}\gt 2.16 \pm 0.59$$.  more » « less
Award ID(s):
2109035 1814719 1852617
PAR ID:
10368036
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1645-1663
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogues from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev–Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 105 clusters with mass and redshift ranges $$10^{13.7} \lt M_{\rm 200m}/\, {\rm M}_\odot \lt 10^{15.5}$$ and 0.1 < z < 2, and the total sky coverage of the maps is $$\approx 15\, 000 \deg ^2$$. We find a clear pressure deficit at R/R200m ≈ 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2–5 compared to predictions, and we discuss possible interpretations of this behaviour. An oriented stacking of clusters – where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogues – shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius. 
    more » « less
  2. ABSTRACT We present results from a 577 ks XMM–Newton observation of SPT-CL J0459–4947, the most distant cluster detected in the South Pole Telescope 2500 square degree (SPT-SZ) survey, and currently the most distant cluster discovered through its Sunyaev–Zel’dovich effect. The data confirm the cluster’s high redshift, z = 1.71 ± 0.02, in agreement with earlier, less precise optical/IR photometric estimates. From the gas density profile, we estimate a characteristic mass of $$M_{500}=(1.8\pm 0.2)\times 10^{14}\, {\rm M}_{\odot }$$; cluster emission is detected above the background to a radius of $$\sim \!2.2\, r_{500}$$, or approximately the virial radius. The intracluster gas is characterized by an emission-weighted average temperature of 7.2 ± 0.3 keV and metallicity with respect to Solar of $$Z/\, Z_{\odot }=0.37\pm 0.08$$. For the first time at such high redshift, this deep data set provides a measurement of metallicity outside the cluster centre; at radii $$r\gt 0.3\, r_{500}$$, we find $$Z/\, Z_{\odot }=0.33\pm 0.17$$ in good agreement with precise measurements at similar radii in the most nearby clusters, supporting an early enrichment scenario in which the bulk of the cluster gas is enriched to a universal metallicity prior to cluster formation, with little to no evolution thereafter. The leverage provided by the high redshift of this cluster tightens by a factor of 2 constraints on evolving metallicity models, when combined with previous measurements at lower redshifts. 
    more » « less
  3. We present a Hubble Space Telescope (HST) weak gravitational lensing study of nine distant and massive galaxy clusters with redshifts 1.0 ≲  z  ≲ 1.7 ( z median  = 1.4) and Sunyaev Zel’dovich (SZ) detection significance ξ  > 6.0 from the South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We measured weak lensing galaxy shapes in HST/ACS F 606 W and F 814 W images and used additional observations from HST/WFC3 in F 110 W and VLT/FORS2 in U HIGH to preferentially select background galaxies at z  ≳ 1.8, achieving a high purity. We combined recent redshift estimates from the CANDELS/3D-HST and HUDF fields to infer an improved estimate of the source redshift distribution. We measured weak lensing masses by fitting the tangential reduced shear profiles with spherical Navarro-Frenk-White (NFW) models. We obtained the largest lensing mass in our sample for the cluster SPT-CL J2040−4451, thereby confirming earlier results that suggest a high lensing mass of this cluster compared to X-ray and SZ mass measurements. Combining our weak lensing mass constraints with results obtained by previous studies for lower redshift clusters, we extended the calibration of the scaling relation between the unbiased SZ detection significance ζ and the cluster mass for the SPT-SZ survey out to higher redshifts. We found that the mass scale inferred from our highest redshift bin (1.2 <  z  < 1.7) is consistent with an extrapolation of constraints derived from lower redshifts, albeit with large statistical uncertainties. Thus, our results show a similar tendency as found in previous studies, where the cluster mass scale derived from the weak lensing data is lower than the mass scale expected in a Planckν ΛCDM (i.e. ν Λ cold dark matter) cosmology given the SPT-SZ cluster number counts. 
    more » « less
  4. ABSTRACT Expanding from previous work, we present weak-lensing (WL) measurements for a total sample of 30 distant (zmedian = 0.93) massive galaxy clusters from the South Pole Telescope Sunyaev–Zel’dovich (SPT-SZ) Survey, measuring galaxy shapes in Hubble Space Telescope (HST) Advanced Camera for Surveys images. We remove cluster members and preferentially select z ≳ 1.4 background galaxies via V − I colour, employing deep photometry from VLT/FORS2 and Gemini-South/GMOS. We apply revised calibrations for the WL shape measurements and the source redshift distribution to estimate the cluster masses. In combination with earlier Magellan/Megacam results for lower-redshifts clusters, we infer refined constraints on the scaling relation between the SZ detection significance and the cluster mass, in particular regarding its redshift evolution. The mass scale inferred from the WL data is lower by a factor $$0.76^{+0.10}_{-0.14}$$ (at our pivot redshift z = 0.6) compared to what would be needed to reconcile a flat Planck νΛCDM cosmology (in which the sum of the neutrino masses is a free parameter) with the observed SPT-SZ cluster counts. In order to sensitively test the level of (dis-)agreement between SPT clusters and Planck, further expanded WL follow-up samples are needed. 
    more » « less
  5. ABSTRACT High-redshift ($$z\sim 1$$) galaxy clusters are the domain where environmental quenching mechanisms are expected to emerge as important factors in the evolution of the quiescent galaxy population. Uncovering these initially subtle effects requires exploring multiple dependencies of quenching across the cluster environment, and through time. We analyse the stellar mass functions (SMFs) of 17 galaxy clusters within the GOGREEN and GCLASS surveys in the range $0.8< z<1.5$, and with $$\log {(M/{\rm {M_\odot }})}>9.5$$. The data are fit simultaneously with a Bayesian model that allows the Schechter function parameters of the quiescent and star-forming populations to vary smoothly with cluster-centric radius and redshift. The model also fits the radial galaxy number density profile of each population, allowing the global quenched fraction to be parametrized as a function of redshift and cluster velocity dispersion. We find the star-forming SMF to not depend on radius or redshift. For the quiescent population however, there is $$\sim 2\sigma$$ evidence for a radial dependence. Outside the cluster core ($$R>0.3\, R_{\rm 200}$$), the quenched fraction above $$\log {(M/{\rm {M_\odot }})}=9.5$$ is $$\sim 40{\rm\,\,per\, cent}$$, and the quiescent SMF is similar in shape to the star-forming field. In contrast, the cluster core has an elevated quenched fraction ($$\sim 70{\rm \,\,per\, cent}$$), and a quiescent SMF similar in shape to the quiescent field population. We explore contributions of ‘early mass-quenching’ and mass-independent ‘environmental-quenching’ models in each of these radial regimes. The core is well described primarily by early mass-quenching, which we interpret as accelerated quenching of massive galaxies in protoclusters, possibly through merger-driven feedback mechanisms. The non-core is better described through mass-independent environmental-quenching of the infalling field population. 
    more » « less