skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Survival of the Strong and Dense: Field Evidence for Rapid, Transport‐Dependent Bed Material Abrasion of Heterogeneous Source Lithology
Abstract Bed material abrasion is a major control on the partitioning of basin‐scale sediment fluxes between coarse and fine material. While abrasion is traditionally treated as an exponential function of transport distance and a lithology‐specific abrasion coefficient, experimental studies have demonstrated greater complexity in the abrasion process: the rate of abrasion varies with clast angularity, transport rate, and grain size. Yet, few studies have attempted to assess the importance of these complexities in a field setting. Here, we develop a new method for rapidly quantifying baseline abrasion rate in the field via Schmidt Hammer Rock Strength. We use this method, along with measurements of gravel bar lithology, to quantify abrasion in the Suiattle River, a basin in the North Cascades of Washington State in which sediment supply to the channel is dominated by recurrent debris flows from a tributary draining Glacier Peak stratovolcano. Rapid downstream strengthening of river bar sediment and a preferential loss of weak, low‐density vesicular volcanic clasts relative to non‐vesicular ones suggest that abrasion is extremely effective in this system. The standard exponential model for downstream abrasion, using single‐lithology abrasion rates fails to reproduce observed downstream patterns in lithology and clast strength. Incorporating heterogeneity in source material strength as well as transport rate‐dependent abrasion largely resolves this failure. Further work is needed to develop a comprehensive quantitative framework for the dependence of bed material abrasion on grain size and transport rate.  more » « less
Award ID(s):
1663859
PAR ID:
10368195
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
127
Issue:
6
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mountain rivers often receive sediment in the form of episodic, discrete pulses from a variety of natural and anthropogenic processes. Once emplaced in the river, the movement of this sediment depends on flow, grain size distribution, and channel and network geometry. Here, we simulate downstream bed elevation changes that result from discrete inputs of sediment (∼10,000 m3), differing in volume and grain size distribution, under medium and high flow conditions. We specifically focus on comparing bed responses between mixed and uniform grain size sediment pulses. This work builds on a Lagrangian, bed‐material sediment transport model and applies it to a 27 km reach of the mainstem Nisqually River, Washington, USA. We compare observed bed elevation change and accumulation rates in a downstream lake to simulation results. Then we investigate the magnitude, timing, and persistence of downstream changes due to the introduction of synthetic sediment pulses by comparing the results against a baseline condition (without pulse). Our findings suggest that bed response is primarily influenced by the sediment‐pulse grain size and distribution. Intermediate mixed‐size pulses (∼50% of the median bed gravel size) are likely to have the largest downstream impact because finer sizes translate quickly and coarser sizes (median bed gravel size and larger) disperse slowly. Furthermore, a mixed‐size pulse, with a smaller median grain size than the bed, increases bed mobility more than a uniform‐size pulse. This work has important implications for river management, as it allows us to better understand fluvial geomorphic responses to variations in sediment supply. 
    more » « less
  2. Abstract Meandering river floodplains often contain intermittently flooded complex channel networks. Many questions remain as to the pervasiveness, function, and evolution of these floodplain channels. In this present work, we analyzed size‐specific sediment transport potential and assessed whether the channelized floodplain of the meandering East Fork White River near Seymour, Indiana is on a net erosional or depositional trajectory. We applied a two‐dimensional hydrodynamic model and used simulated model results to estimate the largest sediment size that can be moved in suspension and as bedload at various flows for grain size classes between 4 µm and 64 mm. We developed a probabilistic method that integrates the largest sediment size that can be moved at various flows to compute an effective grain size, which we compared to measured field data. Results show that the river is capable of supplying sand to the floodplain and these floodplain channels can transport sand in suspension and gravel as bedload. This suggests that sediment supplied from the river could be transported as bedload in floodplain channels. These floodplain channels are supply limited under the current hydrologic regime and the grain size distribution of the bed surface is set by the flow conditions; thus, these floodplain channels are net erosional. Finally, our proposed method of probabilistically integrating the largest sediment size that can be moved at various flows can be used to predict the upper end of the grain size distribution in suspension and in bed material, which is applicable to floodplains as well as coastal areas. 
    more » « less
  3. Gravel‐bed rivers that incise into bedrock are common worldwide. These systems have many similarities with other alluvial channels: they transport large amounts of sediment and adjust their forms in response to discharge and sediment supply. At the same time, the occurrence of bedrock incision implies behaviour that falls on a spectrum between fully detachment‐limited ‘bedrock channels’ and fully transport‐limited ‘alluvial channels’. Here, we present a mathematical model of river profile evolution that integrates bedrock erosion, gravel transport and the formation of channels whose hydraulic geometry is consistent with that of near‐threshold alluvial channels. We combine theory for five interrelated processes: bedload sediment transport in equilibrium gravel‐bed channels, channel width adjustment to flow and sediment characteristics, abrasion of bedrock by mobile sediment, plucking of bedrock and progressive loss of gravel‐sized sediment due to grain attrition. This model contributes to a growing class of models that seek to capture the dynamics of both bedrock incision and alluvial sediment transport. We demonstrate the model's ability to reproduce expected fluvial features such as inverse power law scaling between slope and area, and width and depth consistent with near‐threshold channel theory, and we discuss the role of sediment characteristics in influencing the mode of channel behaviour, erosional mechanism, channel steepness and profile concavity. 
    more » « less
  4. Abstract Steep, boulder bed streams often contain sediment patches, which are areas of the bed with relatively well‐defined boundaries that are occupied by distinct grain size distributions (GSD). In sediment mixtures, the underlying GSD affects the critical Shields stress for a given grain size, which is commonly predicted using hiding functions. Hiding functions may vary with reach‐wide bed GSD, but the effect of local GSD on relative sediment mobility between sediment patches is poorly understood. We explore the effects of patch‐scale GSD on sediment mobility using tracer particles combined with local shear stresses to develop hiding functions for different patch classes within a steep stream. Hiding functions for all tested patch classes were similar, which indicates that the same hiding function can be used for different patches. However, the critical Shields stress for a given grain size generally decreased with lower patch median grain size (D50) suggesting that patches control the relative mobility of each size through both the underlying GSD and local shear stresses. The effects of the underlying GSD partly depend on grain protrusion, which we measured for all grain sizes present on each patch class. Protrusion was generally greater for larger grains regardless of patch class, but for a given grain size, protrusion was increased with smaller patchD50. For a given grain size, higher protrusion results in greater applied fluid forces and reduced resisting forces to partly explain our lower critical Shields stresses in finer patches. Patches therefore can importantly modulate relative sediment mobility through bed structure and may need to be included in reach‐scale sediment transport and channel stability estimates. 
    more » « less
  5. Abstract The dimensionless critical shear stress (τ*c) needed for the onset of sediment motion is important for a range of studies from river restoration projects to landscape evolution calculations. Many studies simply assume aτ*cvalue within the large range of scatter observed in gravel‐bedded rivers because direct field estimates are difficult to obtain. Informed choices of reach‐scaleτ*cvalues could instead be obtained from force balance calculations that include particle‐scale bed structure and flow conditions. Particle‐scale bed structure is also difficult to measure, precluding wide adoption of such force‐balanceτ*cvalues. Recent studies have demonstrated that bed grain size distributions (GSD) can be determined from detailed point clouds (e.g. using G3Point open‐source software). We build on these point cloud methods to introduce Pro+, software that estimates particle‐scale protrusion distributions andτ*cfor each grain size and for the entire bed using a force‐balance model. We validated G3Point and Pro+ using two laboratory flume experiments with different grain size distributions and bed topographies. Commonly used definitions of protrusion may not produce representativeτ*cdistributions, and Pro+ includes new protrusion definitions to better include flow and bed structure influences on particle mobility. The combined G3Point/Pro+ provided accurate grain size, protrusion andτ*cdistributions with simple GSD calibration. The largest source of error in protrusion andτ*cdistributions were from incorrect grain boundaries and grain locations in G3Point, and calibration of grain software beyond comparing GSD is likely needed. Pro+ can be coupled with grain identifying software and relatively easily obtainable data to provide informed estimates ofτ*c. These could replace arbitrary choices ofτ*cand potentially improve channel stability and sediment transport estimates. 
    more » « less