skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 25, 2026

Title: Spatial Variations of Stellar Elemental Abundances in FIRE Simulations of Milky Way-mass Galaxies: Patterns Today Mostly Reflect Those at Formation
Abstract Spatial patterns of stellar elemental abundances encode rich information about a galaxy’s formation history. We analyze the radial, vertical, and azimuthal variations of metals in stars, both today and at formation, in the FIRE-2 cosmological simulations of Milky Way (MW)-mass galaxies, and we compare them with the MW. The radial gradient today is steeper (more negative) for younger stars, which agrees with the MW, although radial gradients are shallower in FIRE-2. Importantly, this age dependence was present already at birth: radial gradients today are only modestly (≲0.01 dex kpc−1) shallower than at birth. Disk vertical settling gives rise to negative vertical gradients across all stars, but vertical gradients of mono-age stellar populations are weak. Similar to the MW, vertical gradients in FIRE-2 are shallower at larger radii, but they are overall shallower in FIRE-2. This vertical dependence was present already at birth: vertical gradients today are only modestly (≲0.1 dex kpc−1) shallower than at birth. Azimuthal scatter is nearly constant with radius, and it is nearly constant with age ≲8 Gyr ago but increases for older stars. Azimuthal scatter is slightly larger (≲0.04 dex) today than at formation. Galaxies with larger azimuthal scatter have a stronger radial gradient, implying that azimuthal scatter today arises primarily from the radial redistribution of gas and stars. Overall, spatial variations of stellar metallicities show only modest differences between formation and today; spatial variations today primarily reflect the conditions of stars at birth, with spatial redistribution of stars after birth contributing secondarily.  more » « less
Award ID(s):
2045928
PAR ID:
10627115
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
981
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We use FIRE-2 simulations to examine 3D variations of gas-phase elemental abundances of [O/H], [Fe/H], and [N/H] in 11 MW and M31-mass galaxies across their formation histories at z ≤ 1.5 ($$t_{\rm lookback} \le 9.4 \, \rm {Gyr}$$), motivated by characterizing the initial conditions of stars for chemical tagging. Gas within $$1 \, \rm {kpc}$$ of the disc mid-plane is vertically homogeneous to $$\lesssim 0.008 \, \rm {dex}$$ at all z ≤ 1.5. We find negative radial gradients (metallicity decreases with galactocentric radius) at all times, which steepen over time from $$\approx \! -0.01 \, \rm {dex}\, \rm {kpc}^{-1}$$ at z = 1 ($$t_{\rm lookback} = 7.8 \, \rm {Gyr}$$) to $$\approx \! -0.03 \, \rm {dex}\, \rm {kpc}^{-1}$$ at z = 0, and which broadly agree with observations of the MW, M31, and nearby MW/M31-mass galaxies. Azimuthal variations at fixed radius are typically $$0.14 \, \rm {dex}$$ at z = 1, reducing to $$0.05 \, \rm {dex}$$ at z = 0. Thus, over time radial gradients become steeper while azimuthal variations become weaker (more homogeneous). As a result, azimuthal variations were larger than radial variations at z ≳ 0.8 ($$t_{\rm lookback} \gtrsim 6.9 \, \rm {Gyr}$$). Furthermore, elemental abundances are measurably homogeneous (to ≲0.05 dex) across a radial range of $$\Delta R \approx 3.5 \, \rm {kpc}$$ at z ≳ 1 and $$\Delta R \approx 1.7 \, \rm {kpc}$$ at z = 0. We also measure full distributions of elemental abundances, finding typically negatively skewed normal distributions at z ≳ 1 that evolve to typically Gaussian distributions by z = 0. Our results on gas abundances inform the initial conditions for stars, including the spatial and temporal scales for applying chemical tagging to understand stellar birth in the MW. 
    more » « less
  2. ABSTRACT We characterize the 3D spatial variations of [Fe/H], [Mg/H], and [Mg/Fe] in stars at the time of their formation, across 11 simulated Milky Way (MW)- and M31-mass galaxies in the FIRE-2 simulations, to inform initial conditions for chemical tagging. The overall scatter in [Fe/H] within a galaxy decreased with time until $$\approx 7 \, \rm {Gyr}$$ ago, after which it increased to today: this arises from a competition between a reduction of azimuthal scatter and a steepening of the radial gradient in abundance over time. The radial gradient is generally negative, and it steepened over time from an initially flat gradient $$\gtrsim 12 \, \rm {Gyr}$$ ago. The strength of the present-day abundance gradient does not correlate with when the disc ‘settled’; instead, it best correlates with the radial velocity dispersion within the galaxy. The strength of azimuthal variation is nearly independent of radius, and the 360 deg scatter decreased over time, from $$\lesssim 0.17 \, \rm {dex}$$ at $$t_{\rm lb} = 11.6 \, \rm {Gyr}$$ to $$\sim 0.04 \, \rm {dex}$$ at present-day. Consequently, stars at $$t_{\rm lb} \gtrsim 8 \, \rm {Gyr}$$ formed in a disc with primarily azimuthal scatter in abundances. All stars formed in a vertically homogeneous disc, Δ[Fe/H]$$\le 0.02 \, \rm {dex}$$ within $$1 \, \rm {kpc}$$ of the galactic mid-plane, with the exception of the young stars in the inner $$\approx 4 \, \rm {kpc}$$ at z ∼ 0. These results generally agree with our previous analysis of gas-phase elemental abundances, which reinforces the importance of cosmological disc evolution and azimuthal scatter in the context of stellar chemical tagging. We provide analytic fits to our results for use in chemical-tagging analyses. 
    more » « less
  3. ABSTRACT Chemical Cartography, or mapping, of our Galaxy has the potential to fully transform our view of its structure and formation. In this work, we use chemical cartography to explore the metallicity distribution of OBAF-type disc stars from the LAMOST survey and a complementary sample of disc giant stars from Gaia DR3. We use these samples to constrain the radial and vertical metallicity gradients across the Galactic disc. We also explore whether there are detectable azimuthal variations in the metallicity distribution on top of the radial gradient. For the OBAF-type star sample from LAMOST, we find a radial metallicity gradient of Δ[Fe/H]/ΔR ∼−0.078 ± 0.001 dex kpc−1 in the plane of the disc and a vertical metallicity gradient of Δ[Fe/H]/ΔZ ∼−0.15 ± 0.01 dex kpc−1 in the solar neighbourhood. The radial gradient becomes shallower with increasing vertical height, while the vertical gradient becomes shallower with increasing Galactocentric radius, consistent with other studies. We also find detectable spatially dependent azimuthal variations on top of the radial metallicity gradient at the level of ∼0.10 dex. Interestingly, the azimuthal variations appear be close to the Galactic spiral arms in one data set (Gaia DR3) but not the other (LAMOST). These results suggest that there is azimuthal structure in the Galactic metallicity distribution and that in some cases it is co-located with spiral arms. 
    more » « less
  4. Abstract The radial gradient of gas-phase metallicity is a powerful probe of the chemical and structural evolution of star-forming galaxies, closely tied to disk formation and gas kinematics in the early Universe. We present spatially resolved chemical and dynamical properties for a sample of 25 galaxies at 0.5 ≲ z ≲ 1.7 from theMSA-3Dsurvey. These innovative observations provide 3D spectroscopy of galaxies at a spatial resolution approaching JWST’s diffraction limit and a high spectral resolution ofR ≃ 2700. The metallicity gradients measured in our galaxy sample range from −0.03 to 0.02 dex kpc−1. Most galaxies exhibit negative or flat radial gradients, indicating lower metallicity in the outskirts or uniform metallicity throughout the entire galaxy. We confirm a tight relationship between stellar mass and metallicity gradient atz ∼ 1 with small intrinsic scatter of 0.02 dex kpc−1. Our results indicate that metallicity gradients become increasingly negative as stellar mass increases, likely because the more massive galaxies tend to be more “disky.” This relationship is consistent with the predictions from cosmological hydrodynamic zoom-in simulations with strong stellar feedback. This work presents the effort to harness the multiplexing capability of the JWST NIRSpec microshutter assembly in slit-stepping mode to map the chemical and kinematic profiles of high-redshift galaxies in large samples and at high spatial and spectral resolution. 
    more » « less
  5. ABSTRACT Stellar radial migration plays an important role in reshaping a galaxy’s structure and the radial distribution of stellar population properties. In this work, we revisit reported observational evidence for radial migration and quantify its strength using the age–[Fe/H] distribution of stars across the Milky Way with APOGEE data. We find a broken age–[Fe/H] relation in the Galactic disc at r > 6 kpc, with a more pronounced break at larger radii. To quantify the strength of radial migration, we assume stars born at each radius have a unique age and metallicity, and then decompose the metallicity distribution function (MDF) of mono-age young populations into different Gaussian components that originated from various birth radii at rbirth < 13 kpc. We find that, at ages of 2 and 3 Gyr, roughly half the stars were formed within 1 kpc of their present radius, and very few stars (<5 per cent) were formed more than 4 kpc away from their present radius. These results suggest limited short-distance radial migration and inefficient long-distance migration in the Milky Way during the last 3 Gyr. In the very outer disc beyond 15 kpc, the observed age–[Fe/H] distribution is consistent with the prediction of pure radial migration from smaller radii, suggesting a migration origin of the very outer disc. We also estimate intrinsic metallicity gradients at ages of 2 and 3 Gyr of −0.061 and −0.063 dex kpc−1, respectively. 
    more » « less