skip to main content


Title: Powering ≈50 µm Motion by a Molecular Event in DNA Crystals
Abstract

A major challenge in material design is to couple nanoscale molecular and supramolecular events into desired chemical, physical, and mechanical properties at the macroscopic scale. Here, a novel self‐assembled DNA crystal actuator is reported, which has reversible, directional expansion and contraction for over 50 μm in response to versatile stimuli, including temperature, ionic strength, pH, and redox potential. The macroscopic actuation is powered by cooperative dissociation or cohesion of thousands of DNA sticky ends at the designed crystal contacts. The increase in crystal porosity and cavity in the expanded state dramatically enhances the crystal capability to accommodate/encapsulate nanoparticles/proteins, while the contraction enables a “sponge squeezing” motion for releasing nanoparticles. This crystal actuator is envisioned to be useful for a wide range of applications, including powering self‐propelled robotics, sensing subtle environmental changes, constructing functional hybrid materials, and working in drug controlled‐release systems.

 
more » « less
Award ID(s):
2107393 2106790 2107267 2025187
NSF-PAR ID:
10445168
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
26
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Photonic crystals—a class of materials whose optical properties derive from their structure in addition to their composition—can be created by self-assembling particles whose sizes are comparable to the wavelengths of visible light. Proof-of-principle studies have shown that DNA can be used to guide the self-assembly of micrometer-sized colloidal particles into fully programmable crystal structures with photonic properties in the visible spectrum. However, the extremely temperature-sensitive kinetics of micrometer-sized DNA-functionalized particles has frustrated attempts to grow large, monodisperse crystals that are required for photonic metamaterial applications. Here we describe a robust two-step protocol for self-assembling single-domain crystals that contain millions of optical-scale DNA-functionalized particles: Monodisperse crystals are initially assembled in monodisperse droplets made by microfluidics, after which they are grown to macroscopic dimensions via seeded diffusion-limited growth. We demonstrate the generality of our approach by assembling different macroscopic single-domain photonic crystals with metamaterial properties, like structural coloration, that depend on the underlying crystal structure. By circumventing the fundamental kinetic traps intrinsic to crystallization of optical-scale DNA-coated colloids, we eliminate a key barrier to engineering photonic devices from DNA-programmed materials.

     
    more » « less
  2. Abstract

    DNA self‐assembly computation is attractive for its potential to perform massively parallel information processing at the molecular level while at the same time maintaining its natural biocompatibility. It has been extensively studied at the individual molecule level, but not as much as ensembles in 3D. Here, the feasibility of implementing logic gates, the basic computation operations, in large ensembles: macroscopic, engineered 3D DNA crystals is demonstrated. The building blocks are the recently developed DNA double crossover‐like (DXL) motifs. They can associate with each other via sticky‐end cohesion. Common logic gates are realized by encoding the inputs within the sticky ends of the motifs. The outputs are demonstrated through the formation of macroscopic crystals that can be easily observed. This study points to a new direction of construction of complex 3D crystal architectures and DNA‐based biosensors with easy readouts.

     
    more » « less
  3. Fibers capable of generating axial contraction are commonly seen in nature and engineering applications. Despite the broad applications of fiber actuators, it is still very challenging to fabricate fiber actuators with combined large actuation strain, fast response speed, and high power density. Here, we report the fabrication of a liquid crystal elastomer (LCE) microfiber actuators using a facile electrospinning technique. Owing to the extremely small size of the LCE microfibers, they can generate large actuation strain (~60 percent) with a fast response speed (<0.2 second) and a high power density (400 watts per kilogram), resulting from the nematic-isotropic phase transition of liquid crystal mesogens. Moreover, no performance degradation is detected in the LCE microfibers after 106cycles of loading and unloading with the maximum strain of 20 percent at high temperature (90 degree Celsius). The small diameter of the LCE microfiber also results in a self-oscillatory behavior in a steady temperature field. In addition, with a polydopamine coating layer, the actuation of the electrospun LCE microfiber can be precisely and remotely controlled by a near-infrared laser through photothermal effect. Using the electrospun LCE microfiber actuator, we have successfully constructed a microtweezer, a microrobot, and a light-powered microfluidic pump.

     
    more » « less
  4. Abstract

    A quasi‐one‐dimensional organic semiconductor, hepta(p‐phenylene vinylene) (HPV), was incorporated into a DNA tensegrity triangle motif using a covalent strategy. 3D arrays were self‐assembled from an HPV‐DNA pseudo‐rhombohedron edge by rational design and characterized by X‐ray diffraction. Templated by the DNA motif, HPV molecules exist as single‐molecule fluorescence emitters at the concentration of 8 mM within the crystal lattice. The anisotropic fluorescence emission from HPV‐DNA crystals indicates HPV molecules are well aligned in the macroscopic 3D DNA lattices. Sophisticated nanodevices and functional materials constructed from DNA can be developed from this strategy by addressing functional components with molecular accuracy.

     
    more » « less
  5. Abstract

    A quasi‐one‐dimensional organic semiconductor, hepta(p‐phenylene vinylene) (HPV), was incorporated into a DNA tensegrity triangle motif using a covalent strategy. 3D arrays were self‐assembled from an HPV‐DNA pseudo‐rhombohedron edge by rational design and characterized by X‐ray diffraction. Templated by the DNA motif, HPV molecules exist as single‐molecule fluorescence emitters at the concentration of 8 mM within the crystal lattice. The anisotropic fluorescence emission from HPV‐DNA crystals indicates HPV molecules are well aligned in the macroscopic 3D DNA lattices. Sophisticated nanodevices and functional materials constructed from DNA can be developed from this strategy by addressing functional components with molecular accuracy.

     
    more » « less