Abstract Deep-reaching warming along the boundary of the Antarctic Circumpolar Current and the subtropical gyre is a consistent feature of multidecadal observational estimates and projections of future climate. In the Indian basin, the maximum ocean heat content change is collocated with the powerful Agulhas Return Current (ARC) in the west and Subantarctic Front (SAF) in the east, forming a southeastward band we denote as the ARC–SAF. We find that this jet-confined warming is linked to a poleward shift of these strong currents via the thermal wind relation. Using a suite of idealized ocean-only and partially coupled climate model experiments, we show that strong global buoyancy flux anomalies consistently drive a poleward shift of the ARC–SAF circulation and the associated heat content change maximum. To better understand how buoyancy addition modifies this circulation in the absence of wind stress change, we next apply buoyancy perturbations only to certain regions. Buoyancy addition across the Indian and Pacific Oceans (including the ARC–SAF) gives rise to a strong baroclinic circulation response and modest poleward shift. In contrast, buoyancy addition in the North Atlantic drives a vertically coherent poleward shift of the ARC–SAF, which we suggest is associated with an ocean heat content perturbation communicated to the Southern Ocean via planetary waves and advected eastward along the ARC–SAF. Whereas poleward-shifting circulation and banded warming under climate change have been previously attributed to poleward-shifting winds in the Southern Ocean, we show that buoyancy addition can drive this circulation change in the Indian sector independent of changing wind stress. Significance StatementThis research aims to identify which changes at the atmosphere–ocean interface cause ocean warming localized within strong Southern Ocean currents under climate change. Whereas previous regional studies have emphasized the role of changes in Southern Hemisphere winds, we show that these currents are also sensitive to additional heat and freshwater input into the ocean—even in the faraway North Atlantic. Adding heat and freshwater shifts the currents southward, which is dynamically tied to the “band” of ocean warming seen in both long-term observations and climate change projections. We demonstrate that the warming climate will modify ocean circulation in unexpected ways; the consequences for the ocean’s ability to continue removing anthropogenic heat and carbon from the atmosphere remain poorly understood.
more »
« less
Relating Patterns of Added and Redistributed Ocean Warming
Abstract Ocean warming patterns are a primary control on regional sea level rise and transient climate sensitivity. However, controls on these patterns in both observations and models are not fully understood, complicated as they are by their dependence on the “addition” of heat to the ocean’s interior along background ventilation pathways and on the “redistribution” of heat between regions by changing ocean dynamics. While many previous studies attribute heat redistribution to changes in high-latitude processes, here we propose that substantial heat redistribution is explained by the large-scale adjustment of the geostrophic flow to warming within the pycnocline. We explore this hypothesis in the University of Victoria Earth System Model, estimating added heat using the transport matrix method. We find that throughout the midlatitudes, subtropics, and tropics, patterns of added and redistributed heat in the model are strongly anticorrelated (R≈ −0.75). We argue that this occurs because changes in ocean currents, acting across pre-existing temperature gradients, redistribute heat away from regions of strong passive heat convergence. Over broad scales, this advective response can be estimated from changes in upper-ocean density alone using the thermal wind relation and is linked to an adjustment of the subtropical pycnocline. These results highlight a previously unappreciated relationship between added and redistributed heat and emphasize the role that subtropical and midlatitude dynamics play in setting patterns of ocean heat storage. Significance StatementThe point of our study was to better understand the geographic pattern of ocean warming caused by human-driven climate change. Warming patterns are challenging to predict because they are sensitive both to how the ocean absorbs heat from the atmosphere and to how ocean currents change in response to increased emissions. We showed that these processes are not independent of one another: in many regions, changes in ocean currents reduce regional variations in the build-up of new heat absorbed from the atmosphere. This finding may help to constrain future projections of regional ocean warming, which matters because ocean warming patterns have a major influence on regional sea level rise, marine ecosystem degradation, and the rate of atmospheric warming.
more »
« less
- Award ID(s):
- 2048576
- PAR ID:
- 10368412
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 35
- Issue:
- 14
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- p. 4627-4643
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Keynote points • Thermal expansion from a warming ocean and land ice melt are the main causes of the accelerating global rise in the mean sea level. • Global warming is also affecting many circulation systems. The Atlantic meridional overturning circulation has already weakened and will most likely continue to do so in the future. The impacts of ocean circulation changes include a regional rise in sea levels, changes in the nutrient distribution and carbon uptake of the ocean and feedbacks with the atmosphere, such as altering the distribution of precipitation. • More than 90 per cent of the heat from global warming is stored in the global ocean. Oceans have exhibited robust warming since the 1950s from the surface to a depth of 2,000 m. The proportion of ocean heat content has more than doubled since the 1990s compared with long-term trends. Ocean warming can be seen in most of the global ocean, with a few regions exhibiting long-term cooling. • The ocean shows a marked pattern of salinity changes in multidecadal observations, with surface and subsurface patterns providing clear evidence of a water cycle amplification over the ocean. That is manifested in enhanced salinities in the near-surface, high-salinity subtropical regions and freshening in the low-salinity regions such as the West Pacific Warm Pool and the poles. • An increase in atmospheric CO2 levels, and a subsequent increase in carbon in the oceans, has changed the chemistry of the oceans to include changes to pH and aragonite saturation. A more carbon-enriched marine environment, especially when coupled with other environmental stressors, has been demonstrated through field studies and experiments to have negative impacts on a wide range of organisms, in particular those that form calcium carbonate shells, and alter biodiversity and ecosystem structure. • Decades of oxygen observations allow for robust trend analyses. Long-term measurements have shown decreases in dissolved oxygen concentrations for most ocean regions and the expansion of oxygen-depleted zones. A temperature-driven solubility decrease is responsible for most near-surface oxygen loss, though oxygen decrease is not limited to the upper ocean and is present throughout the water column in many areas. • Total sea ice extent has been declining rapidly in the Arctic, but trends are insignificant in the Antarctic. In the Arctic, the summer trends are most striking in the Pacific sector of the Arctic Ocean, while, in the Antarctic, the summer trends show increases in the Weddell Sea and decreases in the West Antarctic sector of the Southern Ocean. Variations in sea ice extent result from changes in wind and ocean currents.more » « less
-
Abstract Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. To quantitatively assess their respective roles, we use the 100-member Community Earth System Model, version 2 (CESM2), Large Ensemble over the 1920–2100 period. We first examine the Arctic Ocean warming in a heat budget framework by calculating the contributions from heat exchanges with atmosphere and sea ice and OHT across the Arctic Ocean gateways. Then we quantify how much anomalous heat from the ocean directly translates to sea ice loss and how much is lost to the atmosphere. We find that Arctic Ocean warming is driven primarily by increased OHT through the Barents Sea Opening, with additional contributions from the Fram Strait and Bering Strait OHTs. These OHT changes are driven mainly by warmer inflowing water rather than changes in volume transports across the gateways. The Arctic Ocean warming driven by OHT is partially damped by increased heat loss through the sea surface. Although absorbed shortwave radiation increases due to reduced surface albedo, this increase is compensated by increasing upwelling longwave radiation and latent heat loss. We also explicitly calculate the contributions of ocean–ice and atmosphere–ice heat fluxes to sea ice heat budget changes. Throughout the entire twentieth century as well as the early twenty-first century, the atmosphere is the main contributor to ice heat gain in summer, though the ocean’s role is not negligible. Over time, the ocean progressively becomes the main heat source for the ice as the ocean warms. Significance StatementArctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. Here we use 100 simulations from the same climate model to analyze future warming and sea ice loss. We find that Arctic Ocean warming is primarily driven by increased OHT through the Barents Sea Opening, though the Fram and Bering Straits are also important. This increased OHT is primarily due to warmer inflowing water rather than changing ocean currents. This ocean heat gain is partially compensated by heat loss through the sea surface. During the twentieth century and early twenty-first century, sea ice loss is mainly linked to heat transferred from the atmosphere; however, over time, the ocean progressively becomes the most important contributor.more » « less
-
Abstract Deep convection associated with large-scale tropical atmospheric circulations governs tropical precipitation. Under anthropogenic warming, the weakened Walker and Hadley circulations alter tropical rainfall. Ocean circulations are also expected to change due to global warming, impacting tropical atmospheric circulation systems. From the perspective of ocean heat uptake, we investigate how ocean circulation change modulates tropical atmospheric circulation and vertical motion under CO2warming by comparing fully coupled and slab-ocean simulations. We find that the slowed South Equatorial Current and subtropical cells in the Pacific induce anomalous advective warming, reducing ocean heat uptake in the central-western tropical Pacific. This, combined with increased downward radiation at the top of atmosphere and horizontal moisture advection, escalates the moisture static energy in the air column and promotes ascent in this region, shifting the Pacific Walker circulation eastward and strengthening the Pacific Hadley circulation. Across the tropical Indian Ocean, ocean heat uptake shows a dipole-like change, increasing in the eastern Indian Ocean and seas surrounding marine continents while decreasing in the western Indian Ocean. The former ocean heat uptake increase is triggered by anomalous oceanic vertical advective cooling, which abates the moisture static energy in the air column and inhibits the ascent in the area. The latter ocean heat uptake decrease is prompted by anomalous oceanic advective warming from both horizontal and vertical directions, which enhances the moisture static energy in the air column, resulting in anomalous upward motions. Over most of the tropics, ocean dynamics help attenuate the strengthening of the gross moist stability due to CO2increase, thereby promoting ascent or weakening descent in the atmosphere. Significance StatementLarge-scale tropical atmospheric circulations are expected to weaken as a result of global warming, having a significant impact on tropical precipitation. Because the atmosphere and oceans are inextricably linked, any subtle change in one can affect the other. For this reason, it is critical to understand the role of ocean circulation change in steering the response of large-scale tropical atmospheric circulation to anthropogenic warming. This study approaches the aforementioned scientific question from the novel perspective of ocean heat uptake. It demonstrates how changes in ocean circulation affect heat uptake over tropical oceans, modifying vertical motion and the Walker and Hadley cells in the tropical atmosphere in a warming climate.more » « less
-
Abstract Density-driven steric seawater changes are a leading-order contributor to global mean sea level rise. However, intermodel differences in the magnitude and spatial patterns of steric sea level rise exist at regional scales and often emerge during the spinup and preindustrial control integrations of climate models. Steric sea level results from an eddy-permitting climate model, GFDL CM4, are compared with a lower-resolution counterpart, GFDL-ESM4. The results from both models are examined through basin-scale heat budgets and watermass analysis, and we compare the patterns of ocean heat uptake, redistribution, and sea level differ in ocean-only [i.e., Ocean Model Intercomparison Project (OMIP)] and coupled climate configurations. After correcting for model drift, both GFDL CM4 and GFDL-ESM4 simulate nearly equivalent ocean heat content change and global sea level rise during the historical period. However, the GFDL CM4 model exhibits as much as a 40% increase in surface ocean heat uptake in the Southern Ocean and subsequent increases in horizontal export to other ocean basins after bias correction. The results suggest regional differences in the processes governing Southern Ocean heat export, such as the formation of Antarctic Intermediate Water (AAIW), Subpolar Mode Water (SPMW), and gyre transport between the two models, and that sea level changes in these models cannot be fully bias-corrected. Since the process-level differences between the two models are evident in the preindustrial control simulations of both models, these results suggest that the control simulations are important for identifying and correcting sea level–related model biases.more » « less
An official website of the United States government
