Abstract BackgroundBreast cancer poses a significant health risk to women worldwide, with approximately 30% being diagnosed annually in the United States. The identification of cancerous mammary tissues from non-cancerous ones during surgery is crucial for the complete removal of tumors. ResultsOur study innovatively utilized machine learning techniques (Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN)) alongside Raman spectroscopy to streamline and hasten the differentiation of normal and late-stage cancerous mammary tissues in mice. The classification accuracy rates achieved by these models were 94.47% for RF, 96.76% for SVM, and 97.58% for CNN, respectively. To our best knowledge, this study was the first effort in comparing the effectiveness of these three machine-learning techniques in classifying breast cancer tissues based on their Raman spectra. Moreover, we innovatively identified specific spectral peaks that contribute to the molecular characteristics of the murine cancerous and non-cancerous tissues. ConclusionsConsequently, our integrated approach of machine learning and Raman spectroscopy presents a non-invasive, swift diagnostic tool for breast cancer, offering promising applications in intraoperative settings.
more »
« less
Scaling multi-instance support vector machine to breast cancer detection on the BreaKHis dataset
Abstract MotivationBreast cancer is a type of cancer that develops in breast tissues, and, after skin cancer, it is the most commonly diagnosed cancer in women in the United States. Given that an early diagnosis is imperative to prevent breast cancer progression, many machine learning models have been developed in recent years to automate the histopathological classification of the different types of carcinomas. However, many of them are not scalable to large-scale datasets. ResultsIn this study, we propose the novel Primal-Dual Multi-Instance Support Vector Machine to determine which tissue segments in an image exhibit an indication of an abnormality. We derive an efficient optimization algorithm for the proposed objective by bypassing the quadratic programming and least-squares problems, which are commonly employed to optimize Support Vector Machine models. The proposed method is computationally efficient, thereby it is scalable to large-scale datasets. We applied our method to the public BreaKHis dataset and achieved promising prediction performance and scalability for histopathological classification. Availability and implementationSoftware is publicly available at: https://1drv.ms/u/s!AiFpD21bgf2wgRLbQq08ixD0SgRD?e=OpqEmY. Supplementary informationSupplementary data are available at Bioinformatics online.
more »
« less
- PAR ID:
- 10368492
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 38
- Issue:
- Supplement_1
- ISSN:
- 1367-4803
- Format(s):
- Medium: X Size: p. i92-i100
- Size(s):
- p. i92-i100
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Histopathological image analysis is critical in cancer diagnosis and treatment. Due to the huge size of histopathological images, most existing works analyze the whole slide pathological image (WSI) as a bag and its patches are considered as instances. However, these approaches are limited to analyzing the patches in a fixed shape, while the malignant lesions can form varied shapes. To address this challenge, we propose the Multi-Instance Multi-Shape Support Vector Machine (MIMSSVM) to analyze the multiple images (instances) jointly where each instance consists of multiple patches in varied shapes. In our approach, we can identify the varied morphologic abnormalities of nuclei shapes from the multiple images. In addition to the multi-instance multi-shape learning capability, we provide an efficient algorithm to optimize the proposed model which scales well to a large number of features. Our experimental results show the proposed MIMSSVM method outperforms the existing SVM and recent deep learning models in histopathological classification. The proposed model also identifies the tissue segments in an image exhibiting an indication of an abnormality which provides utility in the early detection of malignant tumors.more » « less
-
Abstract MotivationIn the past few years, researchers have proposed numerous indexing schemes for searching large datasets of raw sequencing experiments. Most of these proposed indexes are approximate (i.e. with one-sided errors) in order to save space. Recently, researchers have published exact indexes—Mantis, VariMerge and Bifrost—that can serve as colored de Bruijn graph representations in addition to serving as k-mer indexes. This new type of index is promising because it has the potential to support more complex analyses than simple searches. However, in order to be useful as indexes for large and growing repositories of raw sequencing data, they must scale to thousands of experiments and support efficient insertion of new data. ResultsIn this paper, we show how to build a scalable and updatable exact raw sequence-search index. Specifically, we extend Mantis using the Bentley–Saxe transformation to support efficient updates, called Dynamic Mantis. We demonstrate Dynamic Mantis’s scalability by constructing an index of ≈40K samples from SRA by adding samples one at a time to an initial index of 10K samples. Compared to VariMerge and Bifrost, Dynamic Mantis is more efficient in terms of index-construction time and memory, query time and memory and index size. In our benchmarks, VariMerge and Bifrost scaled to only 5K and 80 samples, respectively, while Dynamic Mantis scaled to more than 39K samples. Queries were over 24× faster in Mantis than in Bifrost (VariMerge does not immediately support general search queries we require). Dynamic Mantis indexes were about 2.5× smaller than Bifrost’s indexes and about half as big as VariMerge’s indexes. Availability and implementationDynamic Mantis implementation is available at https://github.com/splatlab/mantis/tree/mergeMSTs. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Abstract BackgroundThe clinical utility of machine-learning (ML) algorithms for breast cancer risk prediction and screening practices is unknown. We compared classification of lifetime breast cancer risk based on ML and the BOADICEA model. We explored the differences in risk classification and their clinical impact on screening practices. MethodsWe used three different ML algorithms and the BOADICEA model to estimate lifetime breast cancer risk in a sample of 112,587 individuals from 2481 families from the Oncogenetic Unit, Geneva University Hospitals. Performance of algorithms was evaluated using the area under the receiver operating characteristic (AU-ROC) curve. Risk reclassification was compared for 36,146 breast cancer-free women of ages 20–80. The impact on recommendations for mammography surveillance was based on the Swiss Surveillance Protocol. ResultsThe predictive accuracy of ML-based algorithms (0.843 ≤ AU-ROC ≤ 0.889) was superior to BOADICEA (AU-ROC = 0.639) and reclassified 35.3% of women in different risk categories. The largest reclassification (20.8%) was observed in women characterised as ‘near population’ risk by BOADICEA. Reclassification had the largest impact on screening practices of women younger than 50. ConclusionML-based reclassification of lifetime breast cancer risk occurred in approximately one in three women. Reclassification is important for younger women because it impacts clinical decision- making for the initiation of screening.more » « less
-
Abstract MotivationSingle-nucleotide variants (SNVs) are the most common variations in the human genome. Recently developed methods for SNV detection from single-cell DNA sequencing data, such as SCIΦ and scVILP, leverage the evolutionary history of the cells to overcome the technical errors associated with single-cell sequencing protocols. Despite being accurate, these methods are not scalable to the extensive genomic breadth of single-cell whole-genome (scWGS) and whole-exome sequencing (scWES) data. ResultsHere, we report on a new scalable method, Phylovar, which extends the phylogeny-guided variant calling approach to sequencing datasets containing millions of loci. Through benchmarking on simulated datasets under different settings, we show that, Phylovar outperforms SCIΦ in terms of running time while being more accurate than Monovar (which is not phylogeny-aware) in terms of SNV detection. Furthermore, we applied Phylovar to two real biological datasets: an scWES triple-negative breast cancer data consisting of 32 cells and 3375 loci as well as an scWGS data of neuron cells from a normal human brain containing 16 cells and approximately 2.5 million loci. For the cancer data, Phylovar detected somatic SNVs with high or moderate functional impact that were also supported by bulk sequencing dataset and for the neuron dataset, Phylovar identified 5745 SNVs with non-synonymous effects some of which were associated with neurodegenerative diseases. Availability and implementationPhylovar is implemented in Python and is publicly available at https://github.com/NakhlehLab/Phylovar.more » « less