Materials with strong second-order (
Existing nonlinear-optic implementations of pure, unfiltered heralded single-photon sources do not offer the scalability required for densely integrated quantum networks. Additionally, lithium niobate has hitherto been unsuitable for such use due to its material dispersion. We engineer the dispersion and the quasi-phasematching conditions of a waveguide in the rapidly emerging thin-film lithium niobate platform to generate spectrally separable photon pairs in the telecommunications band. Such photon pairs can be used as spectrally pure heralded single-photon sources in quantum networks. We estimate a heralded-state spectral purity of >94% based on joint spectral intensity measurements. Further, a joint spectral phase-sensitive measurement of the unheralded time-integrated second-order correlation function yields a heralded-state purity of
- NSF-PAR ID:
- 10368696
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 47
- Issue:
- 11
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 2830
- Size(s):
- Article No. 2830
- Sponsoring Org:
- National Science Foundation
More Like this
-
) optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss materials remains challenging and limits the threshold power of on-chip OPO. Here we report an on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase-matched, high-quality microring resonator, whose threshold power ( ) is 400 times lower than that in previous integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained from pump to signal and idler fields at a pump power of 93 µW. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase-matching, and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides a potential platform for realizing photonic neural networks. -
The absence of the single-photon nonlinearity has been a major roadblock in developing quantum photonic circuits at optical frequencies. In this paper, we demonstrate a periodically poled thin film lithium niobate microring resonator (PPLNMR) that reaches 5,000,000%/W second-harmonic conversion efficiency—almost 20-fold enhancement over the state-of-the-art—by accessing its largest
tensor component via quasi-phase matching. The corresponding single-photon coupling rate is estimated to be 1.2 MHz, which is an important milestone as it approaches the dissipation rate of best-available lithium niobate microresonators developed in the community. Using a figure of merit defined as , our device reaches a single-photon nonlinear anharmonicity approaching 1%. We show that, by further scaling of the device, it is possible to improve the single-photon anharmonicity to a regime where photon blockade effect can be manifested. -
We demonstrate a Bell state analyzer that operates directly on frequency mismatch. Based on electro-optic modulators and Fourier-transform pulse shapers, our quantum frequency processor design implements interleaved Hadamard gates in discrete frequency modes. Experimental tests on entangled-photon inputs reveal fidelities of
for discriminating between the and frequency-bin Bell states. Our approach resolves the tension between wavelength-multiplexed state transport and high-fidelity Bell state measurements, which typically require spectral indistinguishability. -
We study the relationship between the input phase delays and the output mode orders when using a pixel-array structure fed by multiple single-mode waveguides for tunable orbital-angular-momentum (OAM) beam generation. As an emitter of a free-space OAM beam, the designed structure introduces a transformation function that shapes and coherently combines multiple (e.g., four) equal-amplitude inputs, with the
th input carrying a phase delay of . The simulation results show that (1) the generated OAM order ℓ is dependent on the relative phase delay ; (2) the transformation function can be tailored by engineering the structure to support different tunable ranges (e.g., , or ); and (3) multiple independent coaxial OAM beams can be generated by simultaneously feeding the structure with multiple independent beams, such that each beam has its own value for the four inputs. Moreover, there is a trade-off between the tunable range and the mode purity, bandwidth, and crosstalk, such that the increase of the tunable range leads to (a) decreased mode purity (from 91% to 75% for ), (b) decreased 3 dB bandwidth of emission efficiency (from 285 nm for to 122 nm for ), and (c) increased crosstalk within the C-band (from to when the tunable range increases from 2 to 4). -
Optical nonlinearity plays a pivotal role in quantum information processing using photons, from heralded single-photon sources and coherent wavelength conversion to long-sought quantum repeaters. Despite the availability of strong dipole coupling to quantum emitters, achieving strong bulk optical nonlinearity is highly desirable. Here, we realize quantum nanophotonic integrated circuits in thin-film InGaP with, to our knowledge, a record-high ratio of
between the single-photon nonlinear coupling rate ( ) and cavity-photon loss rate. We demonstrate second-harmonic generation with an efficiency of in the InGaP photonic circuit and photon-pair generation via degenerate spontaneous parametric downconversion with an ultrahigh rate exceeding 27.5 MHz/µW—an order of magnitude improvement of the state of the art—and a large coincidence-to-accidental ratio up to . Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.