skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectrally separable photon-pair generation in dispersion engineered thin-film lithium niobate
Existing nonlinear-optic implementations of pure, unfiltered heralded single-photon sources do not offer the scalability required for densely integrated quantum networks. Additionally, lithium niobate has hitherto been unsuitable for such use due to its material dispersion. We engineer the dispersion and the quasi-phasematching conditions of a waveguide in the rapidly emerging thin-film lithium niobate platform to generate spectrally separable photon pairs in the telecommunications band. Such photon pairs can be used as spectrally pure heralded single-photon sources in quantum networks. We estimate a heralded-state spectral purity of >94% based on joint spectral intensity measurements. Further, a joint spectral phase-sensitive measurement of the unheralded time-integrated second-order correlation function yields a heralded-state purity of ( 86 ±<#comment/> 5 ) %<#comment/> more » « less
Award ID(s):
2137723 1941583 1839197 1918549
PAR ID:
10368696
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
11
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 2830
Size(s):
Article No. 2830
Sponsoring Org:
National Science Foundation
More Like this
  1. Materials with strong second-order ( χ<#comment/> ( 2 ) ) optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss χ<#comment/> ( 2 ) materials remains challenging and limits the threshold power of on-chip χ<#comment/> ( 2 ) OPO. Here we report an on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase-matched, high-quality microring resonator, whose threshold power ( ∼<#comment/> 30 µ<#comment/> W ) is 400 times lower than that in previous χ<#comment/> ( 2 ) integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained from pump to signal and idler fields at a pump power of 93 µW. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase-matching, and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides a potential platform for realizing photonic neural networks. 
    more » « less
  2. We demonstrate a Bell state analyzer that operates directly on frequency mismatch. Based on electro-optic modulators and Fourier-transform pulse shapers, our quantum frequency processor design implements interleaved Hadamard gates in discrete frequency modes. Experimental tests on entangled-photon inputs reveal fidelities of ∼<#comment/> 98 %<#comment/> for discriminating between the | Ψ<#comment/> + ⟩<#comment/> and | Ψ<#comment/> −<#comment/> ⟩<#comment/> frequency-bin Bell states. Our approach resolves the tension between wavelength-multiplexed state transport and high-fidelity Bell state measurements, which typically require spectral indistinguishability. 
    more » « less
  3. Optical nonlinearity plays a pivotal role in quantum information processing using photons, from heralded single-photon sources and coherent wavelength conversion to long-sought quantum repeaters. Despite the availability of strong dipole coupling to quantum emitters, achieving strong bulk optical nonlinearity is highly desirable. Here, we realize quantum nanophotonic integrated circuits in thin-film InGaP with, to our knowledge, a record-high ratio of 1.5 %<#comment/> between the single-photon nonlinear coupling rate ( g / 2 π<#comment/> = 11.2 M H z ) and cavity-photon loss rate. We demonstrate second-harmonic generation with an efficiency of 71200 ±<#comment/> 10300 %<#comment/> / W in the InGaP photonic circuit and photon-pair generation via degenerate spontaneous parametric downconversion with an ultrahigh rate exceeding 27.5 MHz/µW—an order of magnitude improvement of the state of the art—and a large coincidence-to-accidental ratio up to 1.4 ×<#comment/> 10 4 . Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications. 
    more » « less
  4. Thin-film lithium-niobate-on-insulator (LNOI) has emerged as a superior integrated-photonics platform for linear, nonlinear, and electro-optics. Here we combine quasi-phase-matching, dispersion engineering, and tight mode confinement to realize nonlinear parametric processes with both high efficiency and wide wavelength tunability. On a millimeter-long, Z-cut LNOI waveguide, we demonstrate efficient ( 1900 ±<#comment/> 500 %<#comment/> W −<#comment/> 1 c m −<#comment/> 2 ) and highly tunable ( −<#comment/> 1.71 n m / K ) second-harmonic generation from 1530 to 1583 nm by type-0 quasi-phase-matching. Our technique is applicable to optical harmonic generation, quantum light sources, frequency conversion, and many other photonic information processes across visible to mid-IR spectral bands. 
    more » « less
  5. Precise knowledge of position and timing information is critical to support elementary protocols such as entanglement swapping on quantum networks. While approaches have been devised to use quantum light for such metrology, they largely rely on time-of-flight (ToF) measurements with single-photon detectors and, therefore, are limited to picosecond-scale resolution owing to detector jitter. In this work, we demonstrate an approach to distributed sensing that leverages phase modulation to map changes in the spectral phase to coincidence probability, thereby overcoming the limits imposed by single-photon detection. By extracting information about the joint biphoton phase, we measure a generalized delay—the difference in signal–idler arrival, relative to local radio frequency (RF) phase modulation. For nonlocal ranging measurements, we achieve ( 2 σ<#comment/> ) precision of ±<#comment/> 0.04 p s and for measurements of the relative RF phase, ( 2 σ<#comment/> ) precision of ±<#comment/> 0.7 ∘<#comment/> . We complement this fine timing information with ToF data from single-photon time-tagging to demonstrate absolute measurement of time delay. By relying on off-the-shelf telecommunications equipment and standard quantum resources, this approach has the potential to reduce overhead in practical quantum networks. 
    more » « less