The goal of this study is to constrain the origins of layering in the seismic velocity structure within the cratonic mantle lithosphere (i.e. mid‐lithospheric discontinuities [MLDs]). For long‐lived stations in cratons worldwide, we calculated S‐to‐P converted phase receiver function stacks using time domain deconvolution and a k‐means algorithm to select robust, consistent receiver functions. Negative MLDs appear in only 50% of the receiver function stacks, indicating that negative MLDs are common but intermittent. The negative MLDs correspond to shear velocity drops of 1%–4%, which could be caused by layers of minerals created by metasomatism, although vertical layering in seismic anisotropy cannot be ruled out. In craton interiors, negative MLDs have a lower amplitude (<3% velocity drops) and can be explained by metasomatism of the original Archean mantle. Negative MLD amplitudes increase with decreasing upper mantle shear velocity (toward the outer margins of the cratons), but do not depend on the age of the craton. Thus, negative MLD amplitudes are not dominated by age‐related variations in the cratonic mantle composition, and, instead, are more strongly correlated with proximity to tectonic and metasomatic activity that occurred long after craton formation. Negative MLDs are less numerous among stations that have Paleoproterozoic and Archean thermotectonic ages, consistent with the view that shallow release of slab‐derived fluids during early “warm” subduction was less favorable for negative MLD formation. We also observe velocity gradients below 150 km at stations in craton boundaries and interiors, indicating the presence of seismic velocity changes at the cratonic lithosphere‐asthenosphere boundary and/or Lehmann discontinuity.
Mid‐lithosphere discontinuities are seismic interfaces likely located within the lithospheric mantle of stable cratons, which typically represent velocities decreasing with depth. The origins of these interfaces are poorly understood due to the difficulties in both characterizing them seismically and reconciling the observations with thermal‐chemical models of cratons. Metasomatism of the cratonic lithosphere has been reported by numerous geochemical and petrological studies worldwide, yet its seismic signature remains elusive. Here, we identify two distinct mid‐lithosphere discontinuities at ∼87 and ∼117 km depth beneath the eastern Wyoming craton and the southwestern Superior craton by analyzing seismic data recorded by two longstanding stations. Our waveform modeling shows that the shallow and deep interfaces represent isotropic velocity drops of 2%–8% and 4%–9%, respectively, depending on the contributions from changes in radial anisotropy and density. By building a thermal‐chemical model including the regional xenolith thermobarometry constraints and the experimental phase‐equilibrium data of mantle metasomatism, we show that the shallow interface probably represents the metasomatic front, below which hydrous minerals such as amphibole and phlogopite are present, whereas the deep interface may be caused by the onset of carbonated partial melting. The hydrous minerals and melts are products of mantle metasomatism, with CO2‐H2O‐rich siliceous melt as a probable metasomatic reagent. Our results suggest that mantle metasomatism is probably an important cause of mid‐lithosphere discontinuities worldwide, especially near craton boundaries, where the mantle lithosphere may be intensely metasomatized by fluids and melts released by subducting slabs.
more » « less- Award ID(s):
- 2123529
- PAR ID:
- 10480126
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- AGU Advances
- Volume:
- 4
- Issue:
- 6
- ISSN:
- 2576-604X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Geoid is a key observable for understanding the dynamics of the deep Earth, but has been considered largely transparent to long‐wavelength shallow density structures, especially those of the cratonic lithosphere. Here, we demonstrate that the observed flat craton‐ocean geoid pattern, traditionally interpreted as reflecting neutrally buoyant cratonic keels, provides critical constraints on both the net buoyancy and the depth‐dependent density distribution of cratonic mantle lithosphere. Using both simple theoretical calculations and quantitative numerical models, we show that the recent seismic data on lithospheric structure require the existence of a dense cratonic mantle lithosphere to explain the observed topography and geoid. In practice, topography reveals the net buoyancy of the cratonic lithosphere, while geoid further delineates the depth‐dependence of excess density. We find that the mantle lithosphere below large cratons bears net negative buoyancy close to that of a pure‐thermal lithosphere, with most of the excess density distributed within the lower half of the lithosphere. Density profiles of small cratons, due to strong edge effects from surrounding orogenic belts, are harder to constrain, except that their mantle lithosphere is also negatively buoyant.
-
Abstract The lithospheric structure of the contiguous US and surrounding regions offers clues into the tectonic history, including interactions between subducting slabs and cratons. In this paper, we present a new radially anisotropic shear wave speed model of the upper mantle (70–410 km) of the contiguous US and surrounding regions, constrained by seismic full‐waveform inversion. The new model (named CUSRA2021) utilizes frequency‐dependent travel time measurements, from 160 earthquake events recorded by 5,280 stations. The data coverage in eastern US is improved by incorporating more intraplate earthquakes. The final model exhibits clear and detailed shear wave speed anomalies correlating well with tectonic units such as North America Craton (high‐Vs), Cascadia subduction zones (high‐Vs), Columbia Plateau (low‐Vs), Basin and Range (low‐Vs), etc. In particular, the detailed structure of the North America Craton beneath Illinois basin is revealed. The depth of high‐Vs anomaly beneath the North America Craton correlates well with S‐to‐P receiver function and SH reflection results. Besides, the radial anisotropy in the Craton lithosphere shows a layering structure, which may relate to the process of lithospheric accretion and the origin of mid‐lithosphere discontinuities.
-
Abstract High pressure and temperature experiments were carried out on the oxide mixtures corresponding to the bridgmanite stoichiometry under the hydrous shallow lower mantle conditions (24–25 GPa and 1673–1873 K with 5–10 wt. % of water in the starting material). Oxide mixtures investigated correspond to MgSiO3, (Mg, Fe)SiO3, (Mg, Al, Si)O3, and (Mg, Fe, Al, Si)O3. Melting was observed in all runs. Partitioning of various elements, including Mg, Fe, Si, and H is investigated. Melting under hydrous lower mantle conditions leads to increased (Mg + Fe)O/SiO2in the melt compared to the residual solids. The residual solids often contain a large amount of stishovite, and the melt contains higher (Mg,Fe)O/SiO2ratio than the initial material. (Mg + Fe)O‐rich hydrous melt could explain the low‐velocity anomalies observed in the shallow lower mantle and a large amount of stishovite in the residual solid may be responsible for the scattering of seismic waves in the mid‐lower mantle and may explain the “stishovite paradox. Since stishovite‐rich materials are formed only when silica‐rich source rock (MORB) is melted (not a typical peridotitic rock [bulk silicate Earth]), seismic scattering in the lower mantle provides a clue on the circulation of subducted MORB materials. To estimate hydrogen content, we use a new method of estimating the water content of unquenchable melts, and also propose a new interpretation of the significance of superhydrous phase B inclusions in bridgmanite. The results provide revised values of water partitioning between solid minerals and hydrous melts that are substantially higher than previous estimates.
-
Abstract We conduct a joint inversion of teleseismic receiver functions and Rayleigh wave phase velocity dispersion from both ambient noise and earthquakes using data from 79 seismic stations in southern Africa, which is home to some of the world's oldest cratons and orogenic belts. The area has experienced two of the largest igneous activities in the world (the Okavango dyke swarm and Bushveld mafic intrusion) and thus is an ideal locale for investigating continental formation and evolution. The resulting 3‐D shear wave velocities for the depth range of 0–100 km and crustal thickness measurements show a clear spatial correspondence with known geological features observed on the surface. Higher than normal mantle velocities found beneath the southern part of the Kaapvaal craton are consistent with the basalt removal model for the formation of cratonic lithosphere. In contrast, the Bushveld complex situated within the northern part of the craton is characterized by a thicker crust and higher crustal
V p /V s but lower mantle velocities, which are indicative of crustal underplating of mafic materials and lithospheric refertilization by the world's largest layered mafic igneous intrusion. The thickened crust and relatively low elevation observed in the Limpopo belt, which is a late Archean collisional zone between the Kaapvaal and Zimbabwe cratons, can be explained by eclogitization of the basaltic lower crust. The study also finds evidence for the presence of a stalled segment of oceanic lithosphere beneath the southern margin of the Proterozoic Namaqua‐Natal mobile belt.