skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrogenative Catalysis with Three‐Coordinate Zinc Complexes Supported with PN Ligands is Enhanced Compared to PNP Analogs
Abstract This work details the synthesis, characterization, and catalytic activity of reactive low‐coordinate organozinc complexes. The complexes activate hydrogen and they appear to be more active in hydrogenation of ketones and imines than their tridentate pincer analogs. This is thought, in part, to be due to the lack of trailing third phosphorus arm present in previous work. DFT computations reveal a sigma‐bond metathesis mechanism is comparable to an alternative aromatization/dearomatization metal‐ligand cooperative mechanism.  more » « less
Award ID(s):
1847933 1855470 1919594
PAR ID:
10368833
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
28
Issue:
40
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tethered tungsten‐alkylidenes bearing azoimido ligands (M≡Nγ‐Nβ=NαR) are synthesized, characterized, and tested as initiators for ring expansion metathesis polymerization (REMP). While these ligands are typically unstable and prone to dinitrogen loss, this work demonstrates that tethered alkylidene complexes bearing azoimido ligands are stable enough to be REMP initiators. Moreover, they are more efficient, long‐lived, and stereoselective than their corresponding imido derivatives (M≡NR). Density Functional Theory (DFT) analysis of the azoimido complexes provides insight into their unusual stability. 
    more » « less
  2. Abstract Organic compounds containing luminous rare-earth ions are of interest for numerous nanophotonic and plasmonic applications, including nanoscale lasers, biosensors, and optical magnetism studies. Optical studies of Eu3+complexes revealed that ultra-thin LB monolayers are highly luminescent even when deposited directly on plasmonic metal, which makes these materials very promising for plasmonic applications and studies, including control and enhancement of magnetic dipole emission with a plasmonic environment. In this work, we synthesize amphiphilic complexes with various rare-earth ions Nd3+, Yb3+, and DPT ligands and show that they all are suitable for monolayer or multilayer deposition with the Langmuir–Blodgett (LB) technique. Graphical abstract 
    more » « less
  3. Abstract CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1–5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6–8. Here, we determine the structures of theSynechocystistype III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2′-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes. 
    more » « less
  4. Synthetic control of the influence of steric and electronic factors on the ultrafast (picosecond) isomerization of penta-coordinate ruthenium dithietene complexes (Ru((CF 3 ) 2 C 2 S 2 )(CO)(L) 2 , where L = a monodentate phosphine ligand) is reported. Seven new ruthenium dithietene complexes were prepared and characterized by single crystal X-ray diffraction. The complexes are all square pyramidal and differ only in the axial vs. equatorial coordination of the carbonyl ligand. Fourier Transform Infrared (FTIR) spectroscopy was used to study the ν (CO) bandshapes of the complexes in solution, and these reveal rapid exchange between two or three isomers of each complex. Isomerization is proposed to follow a Berry psuedorotation-like mechanism where a metastable, trigonal bipyramidal (TBP) intermediate is observed spectroscopically. Electronic tuning of the phosphine ligands L = PPh 3 , P(( p -Me)Ph) 3 , (( p -Cl)Ph) 3 , at constant cone angle is found to have little effect on the kinetics or thermodynamic stabilities of the axial, equatorial and TBP isomers of the differently substituted complexes. Steric tuning of the phosphine ligands over a range of phosphine cone angles (135 < θ < 165°) has a profound impact on the isomerization process, and in the limit of greatest steric bulk, the axial isomer is not observable. Temperature dependence of the FTIR spectra was used to obtain the relative thermodynamic stabilities of the different isomers of each of the seven ruthenium dithietene complexes. This study details how ligand steric effects can be used to direct the solution state dynamics on the picosecond time scale of discrete isomers energetically separated by <2.2 kcal mol −1 . This work provides the most detailed description to date of ultrafast isomerization in the ground states of transition metal complexes. 
    more » « less
  5. RationaleTandem‐ion mobility spectrometry/mass spectrometry methods have recently gained traction for the structural characterization of proteins and protein complexes. However, ion activation techniques currently coupled with tandem‐ion mobility spectrometry/mass spectrometry methods are limited in their ability to characterize structures of proteins and protein complexes. MethodsHere, we describe the coupling of the separation capabilities of tandem‐trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS) with the dissociation capabilities of ultraviolet photodissociation (UVPD) for protein structure analysis. ResultsWe establish the feasibility of dissociating intact proteins by UV irradiation at 213 nm between the two TIMS devices in tTIMS/MS and at pressure conditions compatible with ion mobility spectrometry (2–3 mbar). We validate that the fragments produced by UVPD under these conditions result from a radical‐based mechanism in accordance with prior literature on UVPD. The data suggest stabilization of fragment ions produced from UVPD by collisional cooling due to the elevated pressures used here (“UVnoD2”), which otherwise do not survive to detection. The data account for a sequence coverage for the protein ubiquitin comparable to recent reports, demonstrating the analytical utility of our instrument in mobility‐separating fragment ions produced from UVPD. ConclusionsThe data demonstrate that UVPD carried out at elevated pressures of 2–3 mbar yields extensive fragment ions rich in information about the protein and that their exhaustive analysis requires IMS separation post‐UVPD. Therefore, because UVPD and tTIMS/MS each have been shown to be valuable techniques on their own merit in proteomics, our contribution here underscores the potential of combining tTIMS/MS with UVPD for structural proteomics. 
    more » « less