skip to main content


Title: Hydrologic risk from consecutive dry and wet extremes at the global scale
Abstract

Dry and wet extremes (i.e., droughts and floods) are the costliest hydrologic hazards for infrastructure and socio-environmental systems. Being closely interconnected and interdependent extremes of the same hydrological cycle, they often occur in close succession with the potential to exacerbate hydrologic risks. However, traditionally this is ignored and both hazards are considered separately in hydrologic risk assessments; this can lead to an underestimation of critical infrastructure risks (e.g., dams, levees, dikes, and reservoirs). Here, we identify and characterize consecutive dry and wet extreme (CDW) events using the Standardized Precipitation Evapotranspiration Index, assess their multi-hazard hydrologic risks employing copula models, and investigate teleconnections with large-scale climate variability. We identify hotspots of CDW events in North America, Europe, and Australia where the total numbers of CDW events range from 20 to 30 from 1901 to 2015. Decreasing trends in recovery time (i.e., time between termination of dry extreme and onset of wet extreme) and increasing trends in dry and wet extreme severities reveal the intensification of CDW events over time. We quantify that the joint exceedance probabilities of dry and wet extreme severities equivalent to 50-year and 100-year univariate return periods increase by several folds (up to 20 and 54 for 50-year and 100-year return periods, respectively) when CDW events and their associated dependence are considered compared to their independent and isolated counterparts. We find teleconnections between CDW and Niño3.4; at least 80% of the CDW events are causally linked to Niño3.4 at 50% of the grid locations across the hotspot regions. This study advances the understanding of multi-hazard hydrologic risks from CDW events and the presented results can aid more robust planning and decision-making.

 
more » « less
Award ID(s):
1929382
NSF-PAR ID:
10368858
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Communications
Volume:
4
Issue:
7
ISSN:
2515-7620
Page Range / eLocation ID:
Article No. 071001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Northern Mexico is home to more than 32 million people and is of significant agricultural and economic importance for the country. The region includes three distinct hydroclimatic regions, all of which regularly experience severe dryness and flooding and are highly susceptible to future changes in precipitation. To date, little work has been done to characterize future trends in either mean or extreme precipitation over northern Mexico. To fill this gap, we investigate projected precipitation trends over the region in the NA-CORDEX ensemble of dynamically downscaled simulations. We first verify that these simulations accurately reproduce observed precipitation over northern Mexico, as derived from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) product, demonstrating that the NA-CORDEX ensemble is appropriate for studying precipitation trends over the region. By the end of the century, simulations forced with a high-emissions scenario project that both mean and extreme precipitation will decrease to the west and increase to the east of the Sierra Madre highlands, decreasing the zonal gradient in precipitation. We also find that the North American monsoon, which is responsible for a substantial fraction of the precipitation over the region, is likely to start later and last approximately three weeks longer. The frequency of extreme precipitation events is expected to double throughout the region, exacerbating the flood risk for vulnerable communities in northern Mexico. Collectively, these results suggest that the extreme precipitation-related dangers that the region faces, such as flooding, will increase significantly by the end of the century, with implications for the agricultural sector, economy, and infrastructure.

    Significance Statement

    Northern Mexico regularly experiences severe flooding and its important agricultural sector can be heavily impacted by variations in precipitation. Using high-resolution climate model simulations that have been tested against observations, we find that these hydroclimate extremes are likely to be exacerbated in a warming climate; the dry (wet) season is projected to receive significantly less (more) precipitation (approximately ±10% by the end of the century). Simulations suggest that some of the changes in precipitation over the region can be related to the North American monsoon, with the monsoon starting later in the year and lasting several weeks longer. Our results also suggest that the frequency of extreme precipitation will increase, although this increase is smaller than that projected for other regions, with the strongest storms becoming 20% more frequent per degree of warming. These results suggest that this region may experience significant changes to its hydroclimate through the end of the century that will require significant resilience planning.

     
    more » « less
  2. Abstract

    The long‐term hydroclimatic variability in Santiago (Chile) was analysed by means of a new 481‐year (1536–2016 CE) tree‐ring reconstruction of the Standardized Precipitation Evapotranspiration Index (SPEI) of August, integrating the hydroclimatic conditions during the preceding 14 months. Results show a high frequency of extreme drought events in the late 20th and early 21st centuries, while the frequency of extreme wet events was higher in the 17th–18th centuries. The mid‐20th century represents a breaking point for the hydroclimatic history in the region, including some significant changes: (a) the interannual variability increased; (b) the wet events became less intense; (c) the extreme dry events became more frequent; and (d) the most intense dry event of the entire period was identified, coinciding with the so‐called Megadrought (2006–2016). A correlation analysis between the reconstructed SPEI and three climate indices (PDO, SOI and Niño3.4) was performed at monthly scale, considering different multi‐annual aggregations. The analysis shows diverse impacts on the hydroclimatic variability, with positive correlations between SPEI and PDO as well as Niño3.4, and negative correlations between SPEI and SOI. The most significant correlations were, overall, found at multi‐annual time scales (>7 years). Results help to better understand the current hydroclimatic changes (Megadrought) in a long‐term context.

     
    more » « less
  3. Abstract

    Compound flooding frequently threatens life and assets of people who live in low‐lying coastal regions. Co‐occurrence or sequence of extremes (e.g., high river discharge and extreme coastal water level) is of paramount importance as it may result in flood hazards with potential impacts larger than each extreme in isolation. Here, we use a coupled approach, that is, bivariate statistical analysis linked to hydrodynamic modeling, to quantify compounding effects of flood drivers and generate flood hazard maps near Savannah, Georgia. Also, we integrate wetland elevation correction in digital elevation models to improve hydrodynamic simulations of compound events and hence the accuracy of flood hazard (inundation and velocity) maps. Using statistical measures, we analyze compounding effects of terrestrial/coastal flood drivers and wetland elevation correction on maximum floodwater height (MFH) and velocity (MFV) for 50‐year return period scenarios. In addition, we compare our results to MFH and MFV patterns of Hurricane Matthew that hit the West Atlantic Coasts on October 2016. The statistical measures indicate significant differences among the scenarios, partly explained by wetland elevation correction. Inundation and velocity maps suggest that a proposed composite, that is, synthesis of marginalQ, marginalH, and “AND” scenarios, can lead to the lowest average underestimation of MFH (−0.35 m) and overestimation of MFV (0.20 m/s) within wetland areas. We conclude that a thorough compound flooding assessment should leverage statistical analysis and hydrodynamic modeling of extremes including corrections of coastal digital elevation models.

     
    more » « less
  4. Abstract

    Extreme precipitation events are arguably one of the most important natural hazards in many areas of the globe, impacting nearly every societal sector. In the Northeastern United States, extreme precipitation events have been shown to be increasing with several recent events garnering national attention (i.e., Ellicott City Maryland 2018; Tropical Storm Lee 2011). The NOAA Atlas 14 product is the nation's standard for estimating the magnitude and frequency of site‐specific extreme precipitation events, containing both precipitation frequency estimates, as well as associated confidence intervals. The Atlas uses surface stations, primarily from the National Weather Service Cooperative Observer Program, and statistical methodologies to provide point‐based precipitation exceedance probability estimates for several durations and potential recurrence intervals. Unfortunately, the number and quality of Cooperative Observer sites varies greatly over space and time. This research compares observed precipitation extremes from a high‐resolution statewide mesonet to those estimated by the Atlas 14 product for a 10‐year recurrence interval at several precipitation durations. Results of the analysis indicate that Atlas 14 underestimates the number and magnitude of extreme precipitation events across the state of Delaware at longer event durations (360‐ to 1,440‐min). At shorter durations (5‐ to 240‐min) the Atlas 14 estimates are more closely aligned with the observations from the high‐resolution precipitation network. These results suggest that caution should be exercised when using Atlas 14 estimates for engineering standards and hydrologic studies, especially for longer duration events. Therefore, a more rapid update cycle for revision of the Atlas 14 product should be considered, as a changing climate regime may be responsible for the differences identified in this research.

     
    more » « less
  5. Abstract Increases in climate hazards and their impacts mark one of the major challenges of climate change. Situations in which hazards occur close enough to one another to result in amplified impacts, because systems are insufficiently resilient or because hazards themselves are made more severe, are of special concern. We consider projected changes in such compounding hazards using the Max Planck Institute Grand Ensemble under a moderate (RCP4.5) emissions scenario, which produces warming of about 2.25 °C between pre-industrial (1851–1880) and 2100. We find that extreme heat events occurring on three or more consecutive days increase in frequency by 100%–300%, and consecutive extreme precipitation events increase in most regions, nearly doubling for some. The chance of concurrent heat and drought leading to simultaneous maize failures in three or more breadbasket regions approximately doubles, while interannual wet-dry oscillations become at least 20% more likely across much of the subtropics. Our results highlight the importance of taking compounding climate extremes into account when looking at possible tipping points of socio-environmental systems. 
    more » « less