skip to main content

Title: Hydrologic risk from consecutive dry and wet extremes at the global scale

Dry and wet extremes (i.e., droughts and floods) are the costliest hydrologic hazards for infrastructure and socio-environmental systems. Being closely interconnected and interdependent extremes of the same hydrological cycle, they often occur in close succession with the potential to exacerbate hydrologic risks. However, traditionally this is ignored and both hazards are considered separately in hydrologic risk assessments; this can lead to an underestimation of critical infrastructure risks (e.g., dams, levees, dikes, and reservoirs). Here, we identify and characterize consecutive dry and wet extreme (CDW) events using the Standardized Precipitation Evapotranspiration Index, assess their multi-hazard hydrologic risks employing copula models, and investigate teleconnections with large-scale climate variability. We identify hotspots of CDW events in North America, Europe, and Australia where the total numbers of CDW events range from 20 to 30 from 1901 to 2015. Decreasing trends in recovery time (i.e., time between termination of dry extreme and onset of wet extreme) and increasing trends in dry and wet extreme severities reveal the intensification of CDW events over time. We quantify that the joint exceedance probabilities of dry and wet extreme severities equivalent to 50-year and 100-year univariate return periods increase by several folds (up to 20 and 54 for more » 50-year and 100-year return periods, respectively) when CDW events and their associated dependence are considered compared to their independent and isolated counterparts. We find teleconnections between CDW and Niño3.4; at least 80% of the CDW events are causally linked to Niño3.4 at 50% of the grid locations across the hotspot regions. This study advances the understanding of multi-hazard hydrologic risks from CDW events and the presented results can aid more robust planning and decision-making.

« less
Publication Date:
Journal Name:
Environmental Research Communications
Page Range or eLocation-ID:
Article No. 071001
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Increases in climate hazards and their impacts mark one of the major challenges of climate change. Situations in which hazards occur close enough to one another to result in amplified impacts, because systems are insufficiently resilient or because hazards themselves are made more severe, are of special concern. We consider projected changes in such compounding hazards using the Max Planck Institute Grand Ensemble under a moderate (RCP4.5) emissions scenario, which produces warming of about 2.25 °C between pre-industrial (1851–1880) and 2100. We find that extreme heat events occurring on three or more consecutive days increase in frequency by 100%–300%, and consecutive extreme precipitation events increase in most regions, nearly doubling for some. The chance of concurrent heat and drought leading to simultaneous maize failures in three or more breadbasket regions approximately doubles, while interannual wet-dry oscillations become at least 20% more likely across much of the subtropics. Our results highlight the importance of taking compounding climate extremes into account when looking at possible tipping points of socio-environmental systems.
  2. Extreme storm surges can overwhelm many coastal flooding protection measures in place and cause severe damages to private communities, public infrastructure, and natural ecosystems. In the US Mid-Atlantic, a highly developed and commercially active region, coastal flooding is one of the most significant natural hazards and a year-round threat from both tropical and extra-tropical cyclones. Mean sea levels and high-tide flood frequency has increased significantly in recent years, and major storms are projected to increase into the foreseeable future. We estimate extreme surges using hourly water level data and harmonic analysis for 1980–2019 at 12 NOAA tide gauges in and around the Delaware and Chesapeake Bays. Return levels (RLs) are computed for 1.1, 3, 5, 10, 25, 50, and 100-year return periods using stationary extreme value analysis on detrended skew surges. Two traditional approaches are investigated, Block Maxima fit to General Extreme Value distribution and Points-Over-Threshold fit to Generalized Pareto distribution, although with two important enhancements. First, the GEV r -largest order statistics distribution is used; a modified version of the GEV distribution that allows for multiple maximum values per year. Second, a systematic procedure is used to select the optimum value for r (for the BM/GEVr approach) and themore »threshold (for the POT/GP approach) at each tide gauge separately. RLs have similar magnitudes and spatial patterns from both methods, with BM/GEVr resulting in generally larger 100-year and smaller 1.1-year RLs. Maximum values are found at the Lewes (Delaware Bay) and Sewells Point (Chesapeake Bay) tide gauges, both located in the southwest region of their respective bays. Minimum values are found toward the central bay regions. In the Delaware Bay, the POT/GP approach is consistent and results in narrower uncertainty bands whereas the results are mixed for the Chesapeake. Results from this study aim to increase reliability of projections of extreme water levels due to extreme storms and ultimately help in long-term planning of mitigation and implementation of adaptation measures.« less
  3. Abstract Global gridded precipitation products have proven essential for many applications ranging from hydrological modeling and climate model validation to natural hazard risk assessment. They provide a global picture of how precipitation varies across time and space, specifically in regions where ground-based observations are scarce. While the application of global precipitation products has become widespread, there is limited knowledge on how well these products represent the magnitude and frequency of extreme precipitation—the key features in triggering flood hazards. Here, five global precipitation datasets (MSWEP, CFSR, CPC, PERSIANN-CDR, and WFDEI) are compared to each other and to surface observations. The spatial variability of relatively high precipitation events (tail heaviness) and the resulting discrepancy among datasets in the predicted precipitation return levels were evaluated for the time period 1979–2017. The analysis shows that 1) these products do not provide a consistent representation of the behavior of extremes as quantified by the tail heaviness, 2) there is strong spatial variability in the tail index, 3) the spatial patterns of the tail heaviness generally match the Köppen–Geiger climate classification, and 4) the predicted return levels for 100 and 1000 years differ significantly among the gridded products. More generally, our findings reveal shortcomings of globalmore »precipitation products in representing extremes and highlight that there is no single global product that performs best for all regions and climates.« less
  4. Variability in hydroclimate impacts natural and human systems worldwide. In particular, both decadal variability and extreme precipitation events have substantial effects and are anticipated to be strongly influenced by climate change. From a practical perspective, these impacts will be felt relative to the continuously evolving background climate. Removing the underlying forced trend is therefore necessary to assess the relative impacts, but to date, the small size of most climate model ensembles has made it difficult to do this. Here we use an archive of large ensembles run under a high-emissions scenario to determine how decadal “megadrought” and “megapluvial” events—and shorter-term precipitation extremes—will vary relative to that changing baseline. When the trend is retained, mean state changes dominate: In fact, soil moisture changes are so large in some regions that conditions that would be considered a megadrought or pluvial event today are projected to become average. Time-of-emergence calculations suggest that in some regions including Europe and western North America, this shift may have already taken place and could be imminent elsewhere: Emergence of drought/pluvial conditions occurs over 61% of the global land surface (excluding Antarctica) by 2080. Relative to the changing baseline, megadrought/megapluvial risk either will not change or is slightlymore »reduced. However, the increased frequency and intensity of both extreme wet and dry precipitation events will likely present adaptation challenges beyond anything currently experienced. In many regions, resilience against future hazards will require adapting to an ever-changing “normal,” characterized by unprecedented aridification/wetting punctuated by more severe extremes.« less
  5. Abstract Sea level rise (SLR) and tropical cyclone (TC) climatology change could impact future flood hazards in Jamaica Bay—an urbanized back-barrier bay in New York—yet their compound impacts are not well understood. This study estimates the compound effects of SLR and TC climatology change on flood hazards in Jamaica Bay from a historical period in the late twentieth century (1980–2000) to future periods in the mid- and late-twenty-first century (2030–2050 and 2080–2100, under RCP8.5 greenhouse gas concentration scenario). Flood return periods are estimated based on probabilistic projections of SLR and peak storm tides simulated by a hydrodynamic model for large numbers of synthetic TCs. We find a substantial increase in the future flood hazards, e.g., the historical 100-year flood level would become a 9- and 1-year flood level in the mid- and late-twenty-first century and the 500-year flood level would become a 143- and 4-year flood level. These increases are mainly induced by SLR. However, TC climatology change would considerably contribute to the future increase in low-probability, high-consequence flood levels (with a return period greater than 100 year), likely due to an increase in the probability of occurrence of slow-moving but intense TCs by the end of twenty-first century. We furthermore »conduct high-resolution coastal flood simulations for a series of SLR and TC scenarios. Due to the SLR projected with a 5% exceedance probability, 125- and 1300-year flood events in the late-twentieth century would become 74- and 515-year flood events, respectively, in the late-twenty-first century, and the spatial extent of flooding over coastal floodplains of Jamaica Bay would increase by nearly 10 and 4 times, respectively. In addition, SLR leads to larger surface waves induced by TCs in the bay, suggesting a potential increase in hazards associated with wave runup, erosion, and damage to coastal infrastructure.« less