skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural Parameters and Possible Association of the Ultra-faint Dwarfs Pegasus III and Pisces II from Deep Hubble Space Telescope Photometry
Abstract We present deep Hubble Space Telescope (HST) photometry of the ultra-faint dwarf (UFD) galaxies Pegasus III (Peg III) and Pisces II (Psc II), two of the most distant satellites in the halo of the Milky Way (MW). We measure the structure of both galaxies, derive mass-to-light ratios with newly determined absolute magnitudes, and compare our findings to expectations from UFD-mass simulations. For Peg III, we find an elliptical half-light radius of a h = 1 .′ 88 0.33 + 0.42 ( 118 30 + 31 pc) and M V = 4.17 0.22 + 0.19 ; for Psc II, we measure a h = 1 .′ 31 0.09 + 0.10 (69 ± 8 pc) and M V = 4.28 0.16 + 0.19 . We do not find any morphological features that indicate a significant interaction between the two has occurred, despite their close separation of only ∼40 kpc. Using proper motions (PMs) from Gaia early Data Release 3, we investigate the possibility of any past association by integrating orbits for the two UFDs in an MW-only and a combined MW and Large Magellanic Cloud (LMC) potential. We find that including the gravitational influence of the LMC is crucial, even for these outer-halo satellites, and that a possible orbital history exists where Peg III and Psc II experienced a close (∼10–20 kpc) passage about each other just over ∼1 Gyr ago, followed by a collective passage around the LMC (∼30–60 kpc) just under ∼1 Gyr ago. Considering the large uncertainties on the PMs and the restrictive priors imposed to derive them, improved PM measurements for Peg III and Psc II will be necessary to clarify their relationship. This would add to the rare findings of confirmed pairs of satellites within the Local Group.  more » « less
Award ID(s):
2107772 2233781
PAR ID:
10368879
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 217
Size(s):
Article No. 217
Sponsoring Org:
National Science Foundation
More Like this
  1. A theoretical analysis on crack formation and propagation was performed based on the coupling between the electrochemical process, classical elasticity, and fracture mechanics. The chemical potential of oxygen, thus oxygen partial pressure, at the oxygen electrode-electrolyte interface ( μ O 2 OE∣El ) was investigated as a function of transport properties, electrolyte thickness and operating conditions (e.g., steam concentration, constant current, and constant voltage). Our analysis shows that: a lower ionic area specific resistance (ASR), r i O E , and a higher electronic ASR ( r e O E ) of the oxygen electrode/electrolyte interface are in favor of suppressing crack formation. The μ O 2 O E E l , thus local pO2, are sensitive towards the operating parameters under galvanostatic or potentiostatic electrolysis. Constant current density electrolysis provides better robustness, especially at a high current density with a high steam content. While constant voltage electrolysis leads to greater variations of μ O 2 O E E l . Constant current electrolysis, however, is not suitable for an unstable oxygen electrode because μ O 2 O E E l can reach a very high value with a gradually increased r i O E . A crack may only occur under certain conditions when p O 2 T P B > p c r .  
    more » « less
  2. Abstract We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,f, used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (caramel) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations betweenfand other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficient log 10 ( f mean , σ ) and black-hole mass, (ii) marginal evidence for a similar correlation between log 10 ( f rms , σ ) and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness with log 10 ( f mean , FWHM ) and log 10 ( f rms , FWHM ) , and (iv) marginal evidence for an anticorrelation of inclination angle with log 10 ( f mean , FWHM ) , log 10 ( f rms , σ ) , and log 10 ( f mean , σ ) . Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum, log 10 ( FWHM / σ ) rms , and the virial coefficient, log 10 ( f rms , σ ) , and investigate how BLR properties might be related to line-profile shape usingcaramelmodels. 
    more » « less
  3. Abstract This paper considers the Westervelt equation, one of the most widely used models in nonlinear acoustics, and seeks to recover two spatially-dependent parameters of physical importance from time-trace boundary measurements. Specifically, these are the nonlinearity parameter κ ( x ) often referred to as B / A in the acoustics literature and the wave speed c 0 ( x ) . The determination of the spatial change in these quantities can be used as a means of imaging. We consider identifiability from one or two boundary measurements as relevant in these applications. For a reformulation of the problem in terms of the squared slowness s = 1 / c 0 2 and the combined coefficient η = κ c 0 2 we devise a frozen Newton method and prove its convergence. The effectiveness (and limitations) of this iterative scheme are demonstrated by numerical examples. 
    more » « less
  4. Abstract We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion of σ rv = 2.5 0.8 + 1.3 km s−1, which results in a dynamical mass of M 1 / 2 ( r h ) = 8 4 + 12 × 10 5 Mand a mass-to-light ratio ofM/LV= 440 250 + 650 M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central densities ( ρ 1 / 2 3.5 2.1 + 5.7 × 10 7 Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies. 
    more » « less
  5. Abstract The cluster mass–richness relation (MRR) is an observationally efficient and potentially powerful cosmological tool for constraining the matter density Ωmand the amplitude of fluctuationsσ8using the cluster abundance technique. We derive the MRR relation usingGalWCat19, a publicly available galaxy cluster catalog we created from the Sloan Digital Sky Survey-DR13 spectroscopic data set. In the MRR, cluster mass scales with richness as log M 200 = α + β log N 200 . We find that the MRR we derive is consistent with both the IllustrisTNG and mini-Uchuu cosmological numerical simulations, with a slope ofβ≈ 1. We use the MRR we derived to estimate cluster masses from theGalWCat19catalog, which we then use to set constraints on Ωmandσ8. Utilizing the all-member MRR, we obtain constraints of Ωm= 0.31 0.03 + 0.04 andσ8= 0.82 0.04 + 0.05 , and utilizing the red member MRR only, we obtain Ωm= 0.31 0.03 + 0.04 andσ8= 0.81 0.04 + 0.05 . Our constraints on Ωmandσ8are consistent and very competitive with the Planck 2018 results. 
    more » « less