skip to main content


Title: Independent Discovery of a Nulling Pulsar with Unusual Subpulse Drifting Properties with the Murchison Widefield Array
Abstract

We report the independent discovery of PSR J0026-1955 with the Murchison Widefield Array (MWA) in the ongoing Southern-sky MWA Rapid Two-metre pulsar survey. J0026-1955 has a period of ∼1.306 s, a dispersion measure of ∼20.869 pc cm−3, and a nulling fraction of ∼77%. This pulsar highlights the advantages of the survey's long dwell times (∼80 minutes), which, when fully searched, will be sensitive to the expected population of similarly bright, intermittent pulsars with long nulls. A single-pulse analysis in the MWA's 140–170 MHz band also reveals a complex subpulse drifting behavior, including both rapid changes of the drift rate characteristic of mode switching pulsars, as well as a slow, consistent evolution of the drift rate within modes. In some longer drift sequences, interruptions in the otherwise smooth drift rate evolution occur preferentially at a particular phase, typically lasting a few pulses. These properties make this pulsar an ideal test bed for prevailing models of drifting behavior such as the carousel model.

 
more » « less
Award ID(s):
1816492
NSF-PAR ID:
10368887
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 210
Size(s):
["Article No. 210"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present timing solutions for 21 pulsars discovered in 350 MHz surveys using the Green Bank Telescope (GBT). All were discovered in the Green Bank North Celestial Cap pulsar survey, with the exception of PSR J0957−0619, which was found in the GBT 350 MHz Drift-scan pulsar survey. The majority of our timing observations were made with the GBT at 820 MHz. With a spin period of 37 ms and a 528 days orbit, PSR J0032+6946 joins a small group of five other mildly recycled wide binary pulsars, for which the duration of recycling through accretion is limited by the length of the companion’s giant phase. PSRs J0141+6303 and J1327+3423 are new disrupted recycled pulsars. We incorporate Arecibo observations from the NANOGrav pulsar timing array into our analysis of the latter. We also observed PSR J1327+3423 with the Long Wavelength Array, and our data suggest a frequency-dependent dispersion measure. PSR J0957−0619 was discovered as a rotating radio transient, but is a nulling pulsar at 820 MHz. PSR J1239+3239 is a new millisecond pulsar (MSP) in a 4 days orbit with a low-mass companion. Four of our pulsars already have published timing solutions, which we update in this work: the recycled wide binary PSR J0214+5222, the noneclipsing black widow PSR J0636+5128, the disrupted recycled pulsar J1434+7257, and the eclipsing binary MSP J1816+4510, which is in an 8.7 hr orbit with a redback-mass companion.

     
    more » « less
  2. Abstract

    The AO327 drift survey for radio pulsars and transients used the Arecibo telescope from 2010 until its collapse in 2020. AO327 collected ∼3100 hr of data at 327 MHz with a time resolution of 82μs and a frequency resolution of 24 kHz. While the main motivation for such surveys is the discovery of new pulsars and new, even unforeseen, types of radio transients, they also serendipitously collect a wealth of data on known pulsars. We present an electronic catalog of data and data products of 206 pulsars whose periodic emission was detected by AO327 and are listed in the Australia Telescope National Facility catalog of all published pulsars. The AO327 data products include dedispersed time series at full time resolution, average (“folded”) pulse profiles, Gaussian pulse profile templates, and an absolute phase reference that allows phase aligning the AO327 pulse profiles in a physically meaningful manner with profiles from data taken with other instruments. We also provide machine-readable tables with uncalibrated flux measurements at 327 MHz and pulse widths at 50% and 10% of the pulse peak determined from the fitted Gaussian profile templates. The AO327 catalog data set can be used in applications like population analysis of radio pulsars, pulse profile evolution studies in time and frequency, cone and core emission of the pulsar beam, scintillation, pulse intensity distributions, and others. It also constitutes a ready-made resource for teaching signal-processing and pulsar astronomy techniques.

     
    more » « less
  3. ABSTRACT

    Current prescriptions for supernova natal kicks in rapid binary population synthesis simulations are based on fits of simple functions to single pulsar velocity data. We explore a new parametrization of natal kicks received by neutron stars in isolated and binary systems developed by Mandel & Müller, which is based on 1D models and 3D supernova simulations, and accounts for the physical correlations between progenitor properties, remnant mass, and the kick velocity. We constrain two free parameters in this model using very long baseline interferometry velocity measurements of Galactic single pulsars. We find that the inferred values of natal kick parameters do not differ significantly between single and binary evolution scenarios. The best-fitting values of these parameters are $v$ns = 520 km s−1 for the scaling prefactor for neutron star kicks, and σns = 0.3 for the fractional stochastic scatter in the kick velocities.

     
    more » « less
  4. Abstract

    Lakes set in arctic permafrost landscapes can be susceptible to rapid drainage and downstream flood generation. Of many thousands of lakes in northern Alaska, hundreds have been identified as having high drainage potential directly to river systems and 18 such drainage events have been documented since 1955. In 2018 we began monitoring a large lake with high drainage potential as part of a long‐term hydrological observation network designed to evaluate impacts of land use and climate change. In early June 2022, surface water was observed flowing over a 30‐m wide bluff, with active headward erosion of ice‐rich permafrost soils apparent by late June. This overflow point breached rapidly in early July, draining almost the entire lake within 12 h and generating a 191 m3/s flood to a downstream creek. Water level and turbidity sensors and time‐lapse cameras captured this rapid lake‐drainage event at high resolution. A wind‐driven surface seiche and warming waters following ice‐out helped trigger the initial thermomechanical breach. We estimate at least 600 MT of lake sediment was eroded, mobilized, and transported downstream. A flood wave peaking at 42 m3/s arrived 14 h after the initial breach at a river gauge 9‐km downstream. Comparing this event with three other quantified arctic lake‐drainage floods suggests that lake surface area coupled with drainage gradient height can predict outburst flood magnitude. Using this relationship we estimated future flood hazards from the 146 lakes in the Arctic Coastal Plain of northern Alaska (ACP) with high drainage potential, of which 20% are expected to generate outburst floods exceeding 100 m3/s to downstream rivers. This fortunate and detailed drainage‐event observation adds to a growing body of research on the impact of lakes on arctic hydrology, hazard forecasting in a region with an increasing human footprint, and broader processes of landscape evolution in arctic lowlands.

     
    more » « less
  5. Abstract

    Pulsar timing arrays (PTAs) are galactic-scale gravitational wave (GW) detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency GW signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15 yr data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white-noise parameters and two red-noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7 × 10−15at 5 nHz. A power-law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav’s 15 yr GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals.

     
    more » « less