We present a suite of the first 3D GRMHD collapsar simulations, which extend from the self-consistent jet launching by an accreting Kerr black hole (BH) to the breakout from the star. We identify three types of outflows, depending on the angular momentum, l, of the collapsing material and the magnetic field, B, on the BH horizon: (i) subrelativistic outflow (low l and high B), (ii) stationary accretion shock instability (SASI; high l and low B), (iii) relativistic jets (high l and high B). In the absence of jets, free-fall of the stellar envelope provides a good estimate for the BH accretion rate. Jets can substantially suppress the accretion rate, and their duration can be limited by the magnetization profile in the star. We find that progenitors with large (steep) inner density power-law indices (≳ 2), face extreme challenges as gamma-ray burst (GRB) progenitors due to excessive luminosity, global time evolution in the light curve throughout the burst and short breakout times, inconsistent with observations. Our results suggest that the wide variety of observed explosion appearances (supernova/supernova + GRB/low-luminosity GRBs) and the characteristics of the emitting relativistic outflows (luminosity and duration) can be naturally explained by the differences in the progenitor structure.more »
Using
- Publication Date:
- NSF-PAR ID:
- 10368997
- Journal Name:
- The Astrophysical Journal
- Volume:
- 933
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 164
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract A growing number of core-collapse supernovae (SNe) that show evidence for interaction with dense circumstellar medium (CSM) are accompanied by “precursor” optical emission rising weeks to months prior to the explosion. The precursor luminosities greatly exceed the Eddington limit of the progenitor star, implying that they are accompanied by substantial mass loss. Here, we present a semi-analytic model for SN precursor light curves, which we apply to constrain the properties and mechanisms of the pre-explosion mass loss. We explore two limiting mass-loss scenarios: (1) an “eruption” arising from shock breakout following impulsive energy deposition below the stellar surface; and (2) a steady “wind,” due to sustained heating of the progenitor envelope. The eruption model, which resembles a scaled-down version of Type IIP SNe, can explain the luminosities and timescales of well-sampled precursors, for ejecta masses ∼ 0.1–1
M ⊙and velocities ∼ 100–1000 km s−1. By contrast, the steady wind scenario cannot explain the highest precursor luminosities ≳ 1041erg s−1, under the constraint that the total ejecta mass does not exceed the entire progenitor mass (though the less luminous SN 2020tlf precursor can be explained by a mass-loss rate ∼ 1M ⊙yr−1). However, shock interaction between the wind and pre-existing (earlier ejected) CSMmore » -
Abstract We present Atacama Large Millimeter/submillimeter Array observations with a 800 au resolution and radiative-transfer modeling of the inner part (
r ≈ 6000 au) of the ionized accretion flow around a compact star cluster in formation at the center of the luminous ultracompact Hii region G10.6-0.4. We modeled the flow with an ionized Keplerian disk with and without radial motions in its outer part, or with an external Ulrich envelope. The Markov Chain Monte Carlo fits to the data give total stellar massesM ⋆from 120 to 200M ⊙, with much smaller ionized-gas massesM ion-gas= 0.2–0.25M ⊙. The stellar mass is distributed within the gravitational radiusR g ≈ 1000 to 1500 au, where the ionized gas is bound. The viewing inclination angle from the face-on orientation isi = 49°–56°. Radial motions at radiir >R g converge tov r ,0≈ 8.7 km s−1, or about the speed of sound of ionized gas, indicating that this gas is marginally unbound at most. From additional constraints on the ionizing-photon rate and far-IR luminosity of the region, we conclude that the stellar cluster consists of a few massive stars withM star= 32–60M ⊙, or one star in this range of masses accompanied by a population of lower-mass stars. Any active accretion of ionized gas onto the massive (proto)stars is residual. Themore » -
Abstract Feedback from massive stars plays an important role in the formation of star clusters. Whether a very massive star is born early or late in the cluster formation timeline has profound implications for the star cluster formation and assembly processes. We carry out a controlled experiment to characterize the effects of early-forming massive stars on star cluster formation. We use the star formation software suite
Torch , combining self-gravitating magnetohydrodynamics, ray-tracing radiative transfer,N -body dynamics, and stellar feedback, to model four initially identical 104M ⊙giant molecular clouds with a Gaussian density profile peaking at 521.5 cm−3. Using theTorch software suite through theAMUSE framework, we modify three of the models, to ensure that the first star that forms is very massive (50, 70, and 100M ⊙). Early-forming massive stars disrupt the natal gas structure, resulting in fast evacuation of the gas from the star-forming region. The star formation rate is suppressed, reducing the total mass of the stars formed. Our fiducial control model, without an early massive star, has a larger star formation rate and total efficiency by up to a factor of 3, and a higher average star formation efficiency per freefall time by up to a factor of 7. Early-forming massive stars promote the buildupmore » -
Abstract Long-duration gamma-ray bursts (lGRBs) originate in relativistic collimated outflows—jets—that drill their way out of collapsing massive stars. Accurately modeling this process requires realistic stellar profiles for the jets to propagate through and break out of. Most previous studies have used simple power laws or pre-collapse models for massive stars. However, the relevant stellar profile for lGRB models is in fact that of a star after its core has collapsed to form a compact object. To self-consistently compute such a stellar profile, we use the open-source code GR1D to simulate the core-collapse process for a suite of low-metallicity rotating massive stellar progenitors that have undergone chemically homogeneous evolution. Our models span a range of zero-age main-sequence (ZAMS) masses:
M ZAMS= 13, 18, 21, 25, 35, 40, and 45M ☉. All of these models, at the onset of core-collapse, feature steep density profiles,ρ ∝r −α , withα ≈ 2.5, which would result in jets that are inconsistent with lGRB observables. We follow the collapses of four of the seven models until they form black holes (BHs) and the other three models until they form proto-neutron stars (PNSs). We find, across all models, that the density profile outside the newly formed BH or PNS is well represented by amore »