skip to main content

Title: Algorithms for covering multiple submodular constraints and applications

We consider the problem of covering multiple submodular constraints. Given a finite ground setN, a weight function$$w: N \rightarrow \mathbb {R}_+$$w:NR+,rmonotone submodular functions$$f_1,f_2,\ldots ,f_r$$f1,f2,,froverNand requirements$$k_1,k_2,\ldots ,k_r$$k1,k2,,krthe goal is to find a minimum weight subset$$S \subseteq N$$SNsuch that$$f_i(S) \ge k_i$$fi(S)kifor$$1 \le i \le r$$1ir. We refer to this problem asMulti-Submod-Coverand it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$r=1Multi-Submod-Covergeneralizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced toSubmod-SC. A simple greedy algorithm gives an$$O(\log (kr))$$O(log(kr))approximation where$$k = \sum _i k_i$$k=ikiand this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm forMulti-Submod-Coverthat covers each constraint to within a factor of$$(1-1/e-\varepsilon )$$(1-1/e-ε)while incurring an approximation of$$O(\frac{1}{\epsilon }\log r)$$O(1ϵlogr)in the cost. Second, we consider the special case when each$$f_i$$fiis a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Combinatorial Optimization
Page Range / eLocation ID:
p. 979-1010
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$Quasi-NP=NTIME[n(logn)O(1)]and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$\mathcal { C}$C, by showing that$\mathcal { C}$Cadmits non-trivial satisfiability and/or#SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial#SAT algorithm for a circuit class${\mathcal C}$C. Say that a symmetric Boolean functionf(x1,…,xn) issparseif it outputs 1 onO(1) values of${\sum }_{i} x_{i}$ixi. We show that for every sparsef, and for all “typical”$\mathcal { C}$C, faster#SAT algorithms for$\mathcal { C}$Ccircuits imply lower bounds against the circuit class$f \circ \mathcal { C}$fC, which may bestrongerthan$\mathcal { C}$Citself. In particular:

    #SAT algorithms fornk-size$\mathcal { C}$C-circuits running in 2n/nktime (for allk) implyNEXPdoes not have$(f \circ \mathcal { C})$(fC)-circuits of polynomial size.

    #SAT algorithms for$2^{n^{{\varepsilon }}}$2nε-size$\mathcal { C}$C-circuits running in$2^{n-n^{{\varepsilon }}}$2nnεtime (for someε> 0) implyQuasi-NPdoes not have$(f \circ \mathcal { C})$(fC)-circuits of polynomial size.

    Applying#SAT algorithms from the literature, one immediate corollary of our results is thatQuasi-NPdoes not haveEMAJACC0THRcircuits of polynomial size, whereEMAJis the “exact majority” function, improving previous lower bounds againstACC0[Williams JACM’14] andACC0THR[Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class.

    more » « less
  2. Abstract

    Approximate integer programming is the following: For a given convex body$$K \subseteq {\mathbb {R}}^n$$KRn, either determine whether$$K \cap {\mathbb {Z}}^n$$KZnis empty, or find an integer point in the convex body$$2\cdot (K - c) +c$$2·(K-c)+cwhich isK, scaled by 2 from its center of gravityc. Approximate integer programming can be solved in time$$2^{O(n)}$$2O(n)while the fastest known methods for exact integer programming run in time$$2^{O(n)} \cdot n^n$$2O(n)·nn. So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point$$x^* \in (K \cap {\mathbb {Z}}^n)$$x(KZn)can be found in time$$2^{O(n)}$$2O(n), provided that theremaindersof each component$$x_i^* \mod \ell $$ximodfor some arbitrarily fixed$$\ell \ge 5(n+1)$$5(n+1)of$$x^*$$xare given. The algorithm is based on acutting-plane technique, iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a$$2^{O(n)}n^n$$2O(n)nnalgorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (Integer programming, lattice algorithms, and deterministic, vol. Estimation. Georgia Institute of Technology, Atlanta, 2012) that is considerably more involved. Our algorithm also relies on a newasymmetric approximate Carathéodory theoremthat might be of interest on its own. Our second method concerns integer programming problems in equation-standard form$$Ax = b, 0 \le x \le u, \, x \in {\mathbb {Z}}^n$$Ax=b,0xu,xZn. Such a problem can be reduced to the solution of$$\prod _i O(\log u_i +1)$$iO(logui+1)approximate integer programming problems. This implies, for example thatknapsackorsubset-sumproblems withpolynomial variable range$$0 \le x_i \le p(n)$$0xip(n)can be solved in time$$(\log n)^{O(n)}$$(logn)O(n). For these problems, the best running time so far was$$n^n \cdot 2^{O(n)}$$nn·2O(n).

    more » « less
  3. Abstract

    We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gate-level error with probability close to one. We model noise by adding a pair of weak, unital, single-qubit noise channels after each two-qubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the corresponding noiseless output distribution$$p_{\text {ideal}}$$pidealshrink exponentially with the expected number of gate-level errors. Specifically, the linear cross-entropy benchmarkFthat measures this correlation behaves as$$F=\text {exp}(-2s\epsilon \pm O(s\epsilon ^2))$$F=exp(-2sϵ±O(sϵ2)), where$$\epsilon $$ϵis the probability of error per circuit location andsis the number of two-qubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the uniform distribution$$p_{\text {unif}}$$punifdecays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1-F)p_{\text {unif}}$$pnoisyFpideal+(1-F)punif. In other words, although at least one local error occurs with probability$$1-F$$1-F, the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$O(F\epsilon \sqrt{s})$$O(Fϵs). Thus, the “white-noise approximation” is meaningful when$$\epsilon \sqrt{s} \ll 1$$ϵs1, a quadratically weaker condition than the$$\epsilon s\ll 1$$ϵs1requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$s \ge \Omega (n\log (n))$$sΩ(nlog(n)), which corresponds to onlylogarithmic depthcircuits, and if, additionally, the inverse error rate satisfies$$\epsilon ^{-1} \ge {\tilde{\Omega }}(n)$$ϵ-1Ω~(n), which is needed to ensure errors are scrambled faster thanFdecays. The white-noise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexity-theoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from second-moment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds.

    more » « less
  4. Abstract

    We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenRand Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 andCf(NSiII)=0.750.17+0.12). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range2.06logZ/Z0.75), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M.

    more » « less
  5. Abstract

    Sequence mappability is an important task in genome resequencing. In the (km)-mappability problem, for a given sequenceTof lengthn, the goal is to compute a table whoseith entry is the number of indices$$j \ne i$$jisuch that the length-msubstrings ofTstarting at positionsiandjhave at mostkmismatches. Previous works on this problem focused on heuristics computing a rough approximation of the result or on the case of$$k=1$$k=1. We present several efficient algorithms for the general case of the problem. Our main result is an algorithm that, for$$k=O(1)$$k=O(1), works in$$O(n)$$O(n)space and, with high probability, in$$O(n \cdot \min \{m^k,\log ^k n\})$$O(n·min{mk,logkn})time. Our algorithm requires a careful adaptation of thek-errata trees of Cole et al. [STOC 2004] to avoid multiple counting of pairs of substrings. Our technique can also be applied to solve the all-pairs Hamming distance problem introduced by Crochemore et al. [WABI 2017]. We further develop$$O(n^2)$$O(n2)-time algorithms to computeall(km)-mappability tables for a fixedmand all$$k\in \{0,\ldots ,m\}$$k{0,,m}or a fixedkand all$$m\in \{k,\ldots ,n\}$$m{k,,n}. Finally, we show that, for$$k,m = \Theta (\log n)$$k,m=Θ(logn), the (km)-mappability problem cannot be solved in strongly subquadratic time unless the Strong Exponential Time Hypothesis fails. This is an improved and extended version of a paper presented at SPIRE 2018.

    more » « less