Metasurfaces offer a unique platform to precisely control optical wavefronts and enable the realization of flat lenses, or metalenses, which have the potential to substantially reduce the size and complexity of imaging systems and to realize new imaging modalities. However, it is a major challenge to create achromatic metalenses that produce a single focal length over a broad wavelength range because of the difficulty in simultaneously engineering phase profiles at distinct wavelengths on a single metasurface. For practical applications, there is a further challenge to create broadband achromatic metalenses that work in the transmission mode for incident light waves with any arbitrary polarization state. We developed a design methodology and created libraries of meta-units—building blocks of metasurfaces—with complex cross-sectional geometries to provide diverse phase dispersions (phase as a function of wavelength), which is crucial for creating broadband achromatic metalenses. We elucidated the fundamental limitations of achromatic metalens performance by deriving mathematical equations that govern the tradeoffs between phase dispersion and achievable lens parameters, including the lens diameter, numerical aperture (NA), and bandwidth of achromatic operation. We experimentally demonstrated several dielectric achromatic metalenses reaching the fundamental limitations. These metalenses work in the transmission mode with polarization-independent focusing efficiencies up tomore »
Spaceplates are novel flat-optic devices that implement the optical response of a free-space volume over a smaller length, effectively “compressing space” for light propagation. Together with flat lenses such as metalenses or diffractive lenses, spaceplates have the potential to enable the miniaturization of any free-space optical system. While the fundamental and practical bounds on the performance metrics of flat lenses have been well studied in recent years, a similar understanding of the ultimate limits of spaceplates is lacking, especially regarding the issue of bandwidth, which remains as a crucial roadblock for the adoption of this platform. In this work, we derive fundamental bounds on the bandwidth of spaceplates as a function of their numerical aperture and compression ratio (ratio by which the free-space pathway is compressed). The general form of these bounds is universal and can be applied and specialized for different broad classes of space-compression devices, regardless of their particular implementation. Our findings also offer relevant insights into the physical mechanism at the origin of generic space-compression effects and may guide the design of higher performance spaceplates, opening new opportunities for ultra-compact, monolithic, planar optical systems for a variety of applications.
- Publication Date:
- NSF-PAR ID:
- 10369598
- Journal Name:
- Optica
- Volume:
- 9
- Issue:
- 7
- Page Range or eLocation-ID:
- Article No. 738
- ISSN:
- 2334-2536
- Publisher:
- Optical Society of America
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Metalenses have shown great promise in their ability to function as ultracompact optical systems for focusing and imaging. Remarkably, several designs have been recently demonstrated that operate over a large range of frequencies with minimized chromatic aberrations, potentially paving the way for ultrathin achromatic optics. Here, we derive fundamental bandwidth limits that apply to broadband optical metalenses regardless of their implementation. Specifically, we discuss how the product between achievable time delay and bandwidth is limited in any time-invariant system, and we apply well-established bounds on this product to a general focusing system. We then show that all metalenses designed thus far obey the appropriate bandwidth limit. The derived physical bounds provide a useful metric to compare and assess the performance of different devices, and they offer fundamental insight into how to design better broadband metalenses.
-
Abstract The exponential growth of information stored in data centers and computational power required for various data-intensive applications, such as deep learning and AI, call for new strategies to improve or move beyond the traditional von Neumann architecture. Recent achievements in information storage and computation in the optical domain, enabling energy-efficient, fast, and high-bandwidth data processing, show great potential for photonics to overcome the von Neumann bottleneck and reduce the energy wasted to Joule heating. Optically readable memories are fundamental in this process, and while light-based storage has traditionally (and commercially) employed free-space optics, recent developments in photonic integrated circuits (PICs) and optical nano-materials have opened the doors to new opportunities on-chip. Photonic memories have yet to rival their electronic digital counterparts in storage density; however, their inherent analog nature and ultrahigh bandwidth make them ideal for unconventional computing strategies. Here, we review emerging nanophotonic devices that possess memory capabilities by elaborating on their tunable mechanisms and evaluating them in terms of scalability and device performance. Moreover, we discuss the progress on large-scale architectures for photonic memory arrays and optical computing primarily based on memory performance.
-
Integrated astrophotonic spectrometers are integrated variants of conventional free-space spectrometers that offer significantly reduced size, weight, and cost and immunity to alignment errors, and can be readily integrated with other astrophotonic instruments such as nulling interferometers. Current integrated dispersive astrophotonic spectrometers are one-dimensional devices such as arrayed waveguide gratings or planar echelle gratings. These devices have been limited to
resolving powers and spectral bins due to having limited total optical delay paths and 1D detector array pixel densities. In this paper, we propose and demonstrate a high-resolution and compact astrophotonic serpentine integrated grating (SIG) spectrometer design based on a 2D dispersive serpentine optical phased array. The SIG device combines a 5.2 cm long folded delay line with grating couplers to create a large optical delay path along two dimensions in a compact integrated device footprint. Analogous to free-space crossed-dispersion high-resolution spectrometers, the SIG spectrometer maps spectral content to a 2D wavelength-beam-steered folded-raster emission pattern focused onto a 2D detector array. We demonstrate a SIG spectrometer with resolving power and spectral bins, which are approximately an order of magnitude higher than previous integrated photonic designs that operate over a wide bandwidth, in a footprint. We measure a Rayleigh resolution of and an operational bandwidth from 1540 nm to 1650 nm. Finally, we discuss refinements of the SIG spectrometer that improve its resolution, bandwidth, and throughput. These results show that SIG spectrometer technology provides a path towards miniaturized, high-resolution spectrometers for applications in astronomy and beyond. -
A spatial channel network (SCN) was recently proposed toward the forthcoming spatial division multiplexing (SDM) era, in which the optical layer is explicitly evolved to the hierarchical SDM and wavelength division multiplexing layers, and an optical node is decoupled into a spatial cross-connect (SXC) and wavelength cross-connect to achieve an ultrahigh-capacity optical network in a highly economical manner. In this paper, we report feasibility demonstrations of an evolution scenario regarding the SCN architecture to enhance the flexibility and functionality of spatial channel networking from a simple
fixed-core-access anddirectional spatial channel ring network to a multidegree,any-core-access ,nondirectional , andcore-contentionless mesh SCN. As key building blocks of SXCs, we introduce what we believe to be novel optical devices: amulticore fiber (MCF) splitter, a core selector (CS), and a core and port selector (CPS). We construct free-space optics-based prototypes of these devices using five-core MCFs. Detailed performance evaluations of the prototypes in terms of the insertion loss (IL), polarization-dependent loss (PDL), and intercore cross talk (XT) are conducted. The results show that the prototypes provide satisfactorily low levels of IL, PDL, and XT. We construct a wide variety of reconfigurable spatial add/drop multiplexers (RSADMs) and SXCs in terms of node degree,more »