skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arc hopping dynamics induced by interfacial negative differential resistance
Abstract Pattern formation in plasma–solid interaction represents a great research challenge in many applications from plasma etching to surface treatment, whereby plasma attachments on electrodes (arc roots) are constricted to self-organized spots. Gliding arc discharge in a Jacob’s Ladder, exhibiting hopping dynamics, provides a unique window to probe the nature of pattern formation in plasma–surface interactions. In this work, we find that the existence of negative differential resistance (NDR) across the sheath is responsible for the observed hopping pattern. Due to NDR, the current density and potential drop behave as activator and inhibitor, the dynamic interactions of which govern the surface current density re-distribution and the formation of structured spots. In gliding arc discharges, new arc roots can form separately in front of the existing root(s), which happens periodically to constitute the stepwise hopping. From the instability phase-diagram analysis, the phenomenon that arc attachments tend to constrict itself spontaneously in the NDR regime is well explained. Furthermore, we demonstrate via a comprehensive magnetohydrodynamics (MHD) computation that the existence of a sheath NDR can successfully reproduce the arc hopping as observed in experiments. Therefore, this work uncovers the essential role of sheath NDR in the plasma–solid surface pattern formation and opens up a hitherto unexplored area of research for manipulating the plasma–solid interactions.  more » « less
Award ID(s):
1650544
PAR ID:
10369788
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
1
Issue:
3
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plasma–solid interaction represents a major concern in many applications such as power-interruption and plasma–metal processing. Characterized by high-current density and voltage drop, the arc roots dissipate intensive heat to electrode vaporization, which participates in the ionization and, thereby, significantly alters the plasma properties and gas dynamics. Most of the arc root models feature approaches based on surface temperature or (temperature dependent) current density. Due to the complexity of conjugated heat transfer across arc roots involving three-phase interactions of plasma with liquid spots and solid electrodes, accurately determining the surface temperature distribution is extremely computationally demanding. Hence, models hitherto fail to quantitatively estimate neither the molten spot size nor the total amount of vaporization. In this work, we propose an arc root model featuring a hemispherical structure that correlates the molten spot size with the heat partition between conduction and vaporization to estimate the energy dissipation at arc roots and, thus, to trace the vaporization rate. Following local partial pressure adjusted Langmuir vaporization, we deduce an analytical solution of molten spot size for quasi-steady-state, which compares favorably with experiments. Specifically, the vaporization dominates over conduction for large molten spots as in the case of high-current arcs. However, for low-current arcs, the vaporization heat is trivial compared with conduction. Furthermore, we integrate this arc root model into a study case of arc plasma based on the magnetohydrodynamics method. The simulated arc voltage and arc displacement match with the experiment. This model is expected to find broad applications in power interruption and plasma etching. 
    more » « less
  2. Abstract The next generation of advanced combustion devices is being developed to operate under ultra-high-pressure conditions. However, under such extreme conditions, flame tends to become unstable and measurement of fundamental properties such as the laminar flame speed becomes challenging. One potential method to resolve this issue is measuring the ignition-affected region during spherically expanding flame experiments. The flame in this region is more resistant to perturbations and remains smooth due to the high stretch rates (i.e. small radii). Stable flame propagation allows for improved flame measurement, however, the experimentally observed kernel propagation is a function of both inflammation and ignition plasma. Therefore, the goal of the present study is to better understand the plasma formation and propagation during the ignition process, which would allow for reliable laminar flame speed measurements. To accomplish this goal, thermal plasma operating at high pressures is studied with emphasis on the spark energy effects on the formation of the ignition kernel. The thermal effect of the plasma is experimentally observed using a high-speed Schlieren imaging system. The energy dissipated within the plasma is measured with the use of voltage and current probes with a measurement of plasma sheath voltage drop as an input to numerical modeling. The measured kernel propagation rate is used to assess the accuracy of the model. The experiments and modeling are conducted in dry air at 1, 3, and 5 atm as well as in CH 4 -N 2 mixtures at 1 atm, and kernel radius, temperature, and mass are reported. The voltage-drop (as a non-thermal loss) is measured to be approximately 330 ± 5 V (dry air at 1 atm) for glow plasma with a large dependency on pressure, gas composition, electrode surface quality, electrode geometry, electrode shape, and current density. The same loss within the arc plasma is measured to be 15 ± 5 V, however the arc phase loss which agrees with arc propagation is significantly higher (∼45 V) which suggest additional unaccounted for phenomena occurring during the arc phase. With these losses, the modeling results are shown to predict the final kernel radius within 10%–20% of the observed kernel size. The difference found between the modeling and experimental results is determined to be a result of assuming that the primary loss mechanism (voltage drop across sheath formation) remains constant for the duration of glow discharge. The discrepancy for arc discharge is discussed with several potential sources, however, additional studies are required to better understand how the arc formation affects the kernel propagation. 
    more » « less
  3. null (Ed.)
    Scaling up of transitional “warm” plasmas to industrial level gives possibility to develop plasma systems that combine advantages of thermal and non thermal discharges such as low temperature and high process selectivity (compare to thermal plasma) at high pressure and average power density. Non-equilibrium “cold” gliding arcs (with observation of equilibrium to non equilibrium transition) has been demonstrated at power level 2–3 kW and proved to be a highly efficient plasma stimulators of several plasma chemical and plasma catalytic processes, including hydrogen/syngas generation from biomass, coal and organic wastes, exhaust gas cleaning, fuel desulfurization and water cleaning from emerging contaminants. The gliding arc evolution includes initial micro-arc phase with fast transition to transient non-equilibrium phase with elevated electric field, low gas and high electron temperatures, as well as selective generation of active species typical for cold plasmas. The paper will describe experimentally achieved scaling up of the non-equilibrium gliding arc discharges to the level of 10–15 kW, as well as theoretical scaling up limitations of this powerful non-equilibrium plasma systems. 
    more » « less
  4. Abstract In an atmospheric DC glow discharge with liquid anode, the plasma attachment under certain conditions self-organize into coherent patterns at the anode. Optical emission spectroscopy revealed that attachment emission consists primarily of the second positive system of nitrogen N2(C-B) whose excitation energy is low and sensitive to the change of electron energy distribution. Besides the electrons, negative ions can also accumulate in the anode sheath and affect the local space charge. It has been conjectured that these negative ions play a role in pattern formation at the anode surface. In this work, the role of oxygen negative ions was explored. It was found that the establishment of anode patterns requires at least a 7 % volume fraction of oxygen in the ambient gas. Results showed that at least in this work, O2- is the dominant negative ion species and has a density ~10^13 cm^-3. While the presence of oxygen appears crucial to pattern formation, this study indicated that the mere presence of the negative ions itself was not sufficient for pattern formation, suggesting a more complex mechanism involving electronegative species must be present. In fact, it was found that even when as many as 67 % of negative ions in the plasma were detached, no obvious geometry changes were observed in the self-organized pattern. 
    more » « less
  5. Abstract High-intensity, short-pulse lasers are crucial for generating energetic electrons that produce high-energy-density (HED) states in matter, offering potential applications in igniting dense fusion fuels for fast ignition laser fusion. High-density targets heated by these electrons exhibit spatially non-uniform and highly transient conditions, which have been challenging to characterize due to limitations in diagnostics that provide simultaneous high spatial and temporal resolution. Here, we employ an X-ray Free Electron Laser (XFEL) to achieve spatiotemporally resolved measurements at sub-micron and femtosecond scales on a solid-density copper foil heated by laser-driven fast electrons. Our X-ray transmission imaging reveals the formation of a solid-density hot plasma localized to the laser spot size, surrounded by Fermi degenerate, warm dense matter within a picosecond, and the energy relaxation occurring within the hot plasma over tens of picoseconds. These results validate 2D particle-in-cell simulations incorporating atomic processes and provide insights into the energy transfer mechanisms beyond current simulation capabilities. This work significantly advances our understanding of rapid fast electron heating and energy relaxation in solid-density matter, serving as a key stepping stone towards efficient high-density plasma heating and furthering the fields of HED science and inertial fusion energy research using intense, short-pulse lasers. 
    more » « less