skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Ultracold neutron storage in a bottle coated with the fluoropolymer CYTOP
Abstract

The fluoropolymer CYTOP was investigated in order to evaluate its suitability as a coating material for ultracold neutron (UCN) storage vessels. Using neutron reflectometry on CYTOP-coated silicon wafers, its neutron optical potential was measured to be 115.2(2) neV. UCN storage measurements were carried out in a 3.8 l CYTOP-coated aluminum bottle, in which the storage time constant was found to increase from 311(9) s at room temperature to 564(7) s slightly above 10 K. By combining experimental storage data with simulations of the UCN source, the neutron loss factor of CYTOP is estimated to decrease from 1.1(1)$$\times 10^{-4}$$×10-4to 2.7(2)$$\times 10^{-5}$$×10-5at these temperatures, respectively. These results are of particular importance to the next-generation superthermal UCN source SuperSUN, currently under construction at the Institut Laue-Langevin, for which CYTOP is a possible top-surface coating in the UCN production volume.

 
more » « less
Award ID(s):
2111046
NSF-PAR ID:
10369957
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal A
Volume:
58
Issue:
7
ISSN:
1434-601X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We propose a new measurement of the ratio of positron-proton to electron-proton elastic scattering at DESY. The purpose is to determine the contributions beyond single-photon exchange, which are essential for the Quantum Electrodynamic (QED) description of the most fundamental process in hadronic physics. By utilizing a 20 cm long liquid hydrogen target in conjunction with the extracted beam from the DESY synchrotron, we can achieve an average luminosity of$$2.12\times 10^{35}$$2.12×1035 cm$$^{-2}\cdot $$-2·s$$^{-1}$$-1 ($$\approx 200$$200times the luminosity achieved by OLYMPUS). The proposed two-photon exchange experiment (TPEX) entails a commissioning run at a beam energy of 2 GeV, followed by measurements at 3 GeV, thereby providing new data up to$$Q^2=4.6$$Q2=4.6 (GeV/c)$$^2$$2(twice the range of current measurements). We present and discuss the proposed experimental setup, run plan, and expectations.

     
    more » « less
  2. Abstract

    The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of$$\pm \, 1000$$±1000 s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors ($$\nu _e, \nu _\mu , \nu _\tau $$νe,νμ,ντ) at the level$$10^9{-}10^{15}~\textrm{cm}^{-2}\,\textrm{GW}^{-1}$$109-1015cm-2GW-1have been obtained in the 0.5–5 MeV neutrino energy range.

     
    more » « less
  3. Abstract

    We report on a series of detailed Breit-Pauli and Dirac B-spline R-matrix (DBSR) differential cross section (DCS) calculations for excitation of the$$5\,^2\textrm{S}_{1/2} \rightarrow 5\,^2\textrm{P}_{1/2}$$52S1/252P1/2and$$5\,^2\textrm{S}_{1/2}\rightarrow 5\,^2\textrm{P}_{3/2}$$52S1/252P3/2states in rubidium by 40 eV incident electrons. The early BP computations shown here were carried out with both 5 states and 12 states, while the DBSR models coupled 150 and 325 states, respectively. We also report corresponding results from a limited set of DCS measurements on the unresolved$$5\,^2\textrm{P}_{1/2,3/2}$$52P1/2,3/2states, with the experimental data being restricted to the scattered electron angular range 2–$$10^\circ $$10. Typically, good agreement is found between our calculated and measured DCS for excitation of the unresolved$$5\,^2\textrm{P}_{1/2,3/2}$$52P1/2,3/2states, with best accord being found between the DBSR predictions and the measured data. The present theoretical and experimental results are also compared with predictions from earlier 40 eV calculations using the nonrelativistic Distorted-Wave Born Approximation and a Relativistic Distorted-Wave model.

    Graphic abstract 
    more » « less
  4. Abstract

    A search for exotic decays of the Higgs boson ($$\text {H}$$H) with a mass of 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeVto a pair of light pseudoscalars$$\text {a}_{1} $$a1is performed in final states where one pseudoscalar decays to two$${\textrm{b}}$$bquarks and the other to a pair of muons or$$\tau $$τleptons. A data sample of proton–proton collisions at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$s=13TeVcorresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level ($$\text {CL}$$CL) on the Higgs boson branching fraction to$$\upmu \upmu \text{ b } \text{ b } $$μμbband to$$\uptau \uptau \text{ b } \text{ b },$$ττbb,via a pair of$$\text {a}_{1} $$a1s. The limits depend on the pseudoscalar mass$$m_{\text {a}_{1}}$$ma1and are observed to be in the range (0.17–3.3) $$\times 10^{-4}$$×10-4and (1.7–7.7) $$\times 10^{-2}$$×10-2in the$$\upmu \upmu \text{ b } \text{ b } $$μμbband$$\uptau \uptau \text{ b } \text{ b } $$ττbbfinal states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine upper limits on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} \rightarrow \ell \ell \text{ b } \text{ b})$$B(Ha1a1bb)at 95%$$\text {CL}$$CL, with$$\ell $$being a muon or a$$\uptau $$τlepton. For different types of 2HDM+S, upper bounds on the branching fraction$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$B(Ha1a1)are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space,$${\mathcal {B}}(\text {H} \rightarrow \text {a}_{1} \text {a}_{1} )$$B(Ha1a1)values above 0.23 are excluded at 95%$$\text {CL}$$CLfor$$m_{\text {a}_{1}}$$ma1values between 15 and 60$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeV.

     
    more » « less
  5. Abstract

    Two-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting,$$g \mu _B B$$gμBB, comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor. We show here that tuning the spin energy can produce fractionally quantized Hall effect transitions that include both a change in$$\nu$$νfor the$$R_{xx}$$Rxxminimum, e.g., from$$\nu = 11/7$$ν=11/7to$$\nu = 8/5$$ν=8/5, and a corresponding change in the$$R_{xy}$$Rxy, e.g., from$$R_{xy}/R_{K} = (11/7)^{-1}$$Rxy/RK=(11/7)-1to$$R_{xy}/R_{K} = (8/5)^{-1}$$Rxy/RK=(8/5)-1, with increasing tilt angle. Further, we exhibit a striking size dependence in the tilt angle interval for the vanishing of the$$\nu = 4/3$$ν=4/3and$$\nu = 7/5$$ν=7/5resistance minima, including “avoided crossing” type lineshape characteristics, and observable shifts of$$R_{xy}$$Rxyat the$$R_{xx}$$Rxxminima- the latter occurring for$$\nu = 4/3, 7/5$$ν=4/3,7/5and the 10/7. The results demonstrate both size dependence and the possibility, not just of competition between different spin polarized states at the same$$\nu$$νand$$R_{xy}$$Rxy, but also the tilt- or Zeeman-energy-dependent- crossover between distinct FQHE associated with different Hall resistances.

     
    more » « less