skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the response of a star cluster to a tidal perturbation
ABSTRACT We study the response of star clusters to individual tidal perturbations using controlled N-body simulations. We consider perturbations by a moving point mass and by a disc, and vary the duration of the perturbation as well as the cluster density profile. For fast perturbations (i.e. ‘shocks’), the cluster gains energy in agreement with theoretical predictions in the impulsive limit. For slow disc perturbations, the energy gain is lower, and this has previously been attributed to adiabatic damping. However, the energy gain due to slow perturbations by a point-mass is similar to, or larger than that due to fast shocks, which is not expected because adiabatic damping should be almost independent of the nature of the tides. We show that the geometric distortion of the cluster during slow perturbations is of comparable importance for the energy gain as adiabatic damping, and that the combined effect can qualitatively explain the results. The half-mass radius of the bound stars after a shock increases up to ∼7 per cent for low-concentration clusters, and decreases ∼3 per cent for the most concentrated ones. The fractional mass loss is a non-linear function of the energy gain, and depends on the nature of the tides and most strongly on the cluster density profile, making semi-analytic model predictions for cluster lifetimes extremely sensitive to the adopted density profile.  more » « less
Award ID(s):
1909063
PAR ID:
10370566
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1237-1249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Feedback from active galactic nuclei is a key process in the evolution of massive halos in the Universe. New observational information on feedback is crucial for improving the implementation of the physics in numerical models. In this work, we apply a novel image-manipulation technique, termed “X-arithmetic,” to a sample of 15 galaxy clusters and groups deeply observed with Chandra. This technique decomposes perturbations in feedback-dominated regions into images excluding either (1) weak shocks and sound waves, (2) bubbles inflated by jets, or (3) cooling and slow gas motions (isobaric perturbations), enabling efficient spatial identification of these features without involving spectroscopic analysis. We confirm the nature of previously (spectroscopically) identified features and newly establish the origin of other structures. We find that feedback produces multiple shocks in groups and massive galaxies, but only one to two shocks in clusters. Prominent isobaric structures are abundant around inner cavities in clusters, compared to almost no such structures in groups. These differences suggest that feedback effects are stronger in smaller-mass systems, possibly due to the shallower gravitational potential of groups or more violent feedback. Follow-up spectroscopy, guided by the X-arithmetic results, suggests that earlier-identified “isothermal shocks” could be a mix of isobaric and adiabatic structures. We applied X-arithmetic to galaxy cluster simulations, demonstrating its straightforward application and future potential for testing the feedback physics details in simulations. Our feasibility study shows that imaging data from future X-ray observatories like AXIS will be ideal for expanding X-arithmetic application to a larger sample of objects. 
    more » « less
  2. ABSTRACT Most stars are born in the crowded environments of gradually forming star clusters. Dynamical interactions between close-passing stars and the evolving ultraviolet radiation fields from proximate massive stars are expected to sculpt the protoplanetary discs (PPDs) in these clusters, potentially contributing to the diversity of planetary systems that we observe. Here, we investigate the impact of cluster environment on disc demographics by implementing simple PPD evolution models within N-body simulations of gradual star cluster formation, containing 50 per cent primordial binaries. We consider a range of star formation efficiency per free-fall time, $$\epsilon _{\rm ff}$$, and mass surface density of the natal cloud environment, $$\Sigma _{\rm cloud}$$, both of which affect the overall duration of cluster formation. We track the interaction history of all stars to estimate the dynamical truncation of the discs around stars involved in close encounters. We also track external photoevaporation of the discs due to the ionizing radiation field of the nearby high- and intermediate-mass ($$\gt 5\,{\rm M}_\odot$$) stars. We find that $$\epsilon _{\rm ff}$$, $$\Sigma _{\rm cloud}$$, and the presence of primordial binaries have major influences on the masses and radii of the disc population. In particular, external photoevaporation has a greater impact than dynamical interactions in determining the fate of discs in our clusters. 
    more » « less
  3. ABSTRACT We present updated cosmological constraints from measurements of the gas mass fractions (fgas) of massive, dynamically relaxed galaxy clusters. Our new data set has greater leverage on models of dark energy, thanks to the addition of the Perseus cluster at low redshifts, two new clusters at redshifts z ≳ 1, and significantly longer observations of four clusters at 0.6 < z < 0.9. Our low-redshift (z < 0.16) fgas data, combined with the cosmic baryon fraction measured from the cosmic microwave background (CMB), imply a Hubble constant of h = 0.722 ± 0.067. Combining the full fgas data set with priors on the cosmic baryon density and the Hubble constant, we constrain the dark energy density to be ΩΛ = 0.865 ± 0.119 in non-flat Lambda cold dark matter (cosmological constant) models, and its equation of state to be $$w=-1.13_{-0.20}^{+0.17}$$ in flat, constant-w models, respectively 41 per cent and 29 per cent tighter than our previous work, and comparable to the best constraints available from other probes. Combining fgas, CMB, supernova, and baryon acoustic oscillation data, we also constrain models with global curvature and evolving dark energy. For the massive, relaxed clusters employed here, we find the scaling of fgas with mass to be consistent with a constant, with an intrinsic scatter that corresponds to just ∼3 per cent in distance. 
    more » « less
  4. ABSTRACT Galaxy clusters accrete mass through large-scale, strong, structure-formation shocks. Such a virial shock is thought to deposit fractions ξe and ξB of the thermal energy in cosmic-ray electrons (CREs) and magnetic fields, respectively, thus generating a leptonic virial ring. However, the expected synchrotron signal was not convincingly established until now. We stack low-frequency radio data from the OVRO-LWA around the 44 most massive, high latitude, extended MCXC clusters, enhancing the ring sensitivity by rescaling clusters to their characteristic, R500 radii. Both high (73 MHz) and co-added low (36–68 MHz) frequency channels separately indicate a significant (4–5σ) excess peaked at (2.4–2.6)R500, coincident with a previously stacked Fermi γ-ray signal interpreted as inverse-Compton emission from virial-shock CREs. The stacked radio signal is well fit (TS-test: 4–6σ at high frequency, 4–8σ at low frequencies, and 8–10σ joint) by virial-shock synchrotron emission from the more massive clusters, with $$\dot{m}\xi _e\xi _B\simeq (1\!-\!4)\times 10^{-4}$$, where $$\dot{m}\equiv \dot{M}/(MH)$$ is the dimensionless accretion rate for a cluster of mass M and a Hubble constant H. The inferred CRE spectral index is flat, p ≃ 2.0 ± 0.2, consistent with acceleration in a strong shock. Assuming equipartition or using $$\dot{m}\xi _e\sim 0.6~{{\ \rm per\ cent}}$$ inferred from the Fermi signal yields $$\xi _B\simeq (2\!-\!9)~{{\ \rm per\ cent}}$$, corresponding to B ≃ (0.1–0.3) $$\mu$$G magnetic fields downstream of typical virial shocks. Preliminary evidence suggests non-spherical shocks, with factor 2–3 elongations. 
    more » « less
  5. ABSTRACT We use the TNG50 from the IllustrisTNG suite of cosmological hydrodynamical simulation, complemented by a catalogue of tagged globular clusters, to investigate the properties and build up of two extended luminous components: the intra-cluster light (ICL) and the intra-cluster globular clusters (ICGCs). We select the 39 most massive groups and clusters in the box, spanning the range of virial masses $$5 \times 10^{12} \lt \rm M_{200}/\rm {\rm M}_{\odot } \lt 2 \times 10^{14}$$. We find good agreement between predictions from the simulations and current observational estimates of the fraction of mass in the ICL and its radial extension. The stellar mass of the ICL is only $$\sim 10~{{\ \rm per\ cent}}$$–20 per cent of the stellar mass in the central galaxy but encodes useful information on the assembly history of the group or cluster. About half the ICL in all our systems is brought in by galaxies in a narrow stellar mass range, M* = 1010–1011 M⊙. However, the contribution of low-mass galaxies (M* < 1010 M⊙) to the build up of the ICL varies broadly from system to system, $$\sim 5~{{\ \rm per\ cent}}-45~{{\ \rm per\ cent}}$$, a feature that might be recovered from the observable properties of the ICL at z = 0. At fixed virial mass, systems where the accretion of dwarf galaxies plays an important role have shallower metallicity profiles, less metal content, and a lower stellar mass in the ICL than systems where the main contributors are more massive galaxies. We show that intra-cluster GCs are also good tracers of this history, representing a valuable alternative when diffuse light is not detectable. 
    more » « less