skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Title: Cosmological constraints from gas mass fractions of massive, relaxed galaxy clusters

We present updated cosmological constraints from measurements of the gas mass fractions (fgas) of massive, dynamically relaxed galaxy clusters. Our new data set has greater leverage on models of dark energy, thanks to the addition of the Perseus cluster at low redshifts, two new clusters at redshifts z ≳ 1, and significantly longer observations of four clusters at 0.6 < z < 0.9. Our low-redshift (z < 0.16) fgas data, combined with the cosmic baryon fraction measured from the cosmic microwave background (CMB), imply a Hubble constant of h = 0.722 ± 0.067. Combining the full fgas data set with priors on the cosmic baryon density and the Hubble constant, we constrain the dark energy density to be ΩΛ = 0.865 ± 0.119 in non-flat Lambda cold dark matter (cosmological constant) models, and its equation of state to be $w=-1.13_{-0.20}^{+0.17}$ in flat, constant-w models, respectively 41 per cent and 29 per cent tighter than our previous work, and comparable to the best constraints available from other probes. Combining fgas, CMB, supernova, and baryon acoustic oscillation data, we also constrain models with global curvature and evolving dark energy. For the massive, relaxed clusters employed here, we find the scaling of fgas with mass to be consistent with a constant, with an intrinsic scatter that corresponds to just ∼3 per cent in distance.

more » « less
Award ID(s):
1852617 1908823
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 131-145
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cold Dark Matter with cosmological constant (ΛCDM) cosmological models with early dark energy (EDE) have been proposed to resolve tensions between the Hubble constant $H_0=100\, h$ km ṡ−1Ṁpc−1 measured locally, giving h ≈ 0.73, and H0 deduced from Planck cosmic microwave background (CMB) and other early-Universe measurements plus ΛCDM, giving h ≈ 0.67. EDE models do this by adding a scalar field that temporarily adds dark energy equal to about 10 per cent of the cosmological energy density at the end of the radiation-dominated era at redshift z ∼ 3500. Here, we compare linear and non-linear predictions of a Planck-normalized ΛCDM model including EDE giving h = 0.728 with those of standard Planck-normalized ΛCDM with h = 0.678. We find that non-linear evolution reduces the differences between power spectra of fluctuations at low redshifts. As a result, at z = 0 the halo mass functions on galactic scales are nearly the same, with differences only 1–2 per cent. However, the differences dramatically increase at high redshifts. The EDE model predicts 50 per cent more massive clusters at z = 1 and twice more galaxy-mass haloes at z = 4. Even greater increases in abundances of galaxy-mass haloes at higher redshifts may make it easier to reionize the universe with EDE. Predicted galaxy abundances and clustering will soon be tested by the James Webb Space Telescope (JWST) observations. Positions of baryonic acoustic oscillations (BAOs) and correlation functions differ by about 2 per cent between the models – an effect that is not washed out by non-linearities. Both standard ΛCDM and the EDE model studied here agree well with presently available acoustic-scale observations, but the Dark Energy Spectroscopic Instrument and Euclid measurements will provide stringent new tests. 
    more » « less
  2. Abstract We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find Ω M = 0.334 ± 0.018 from SNe Ia alone. For a flat w 0 CDM model, we measure w 0 = −0.90 ± 0.14 from SNe Ia alone, H 0 = 73.5 ± 1.1 km s −1 Mpc −1 when including the Cepheid host distances and covariance (SH0ES), and w 0 = − 0.978 − 0.031 + 0.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w 0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w 0 w a CDM universe, and measure w a = − 0.1 − 2.0 + 0.9 from Pantheon+ SNe Ia alone, H 0 = 73.3 ± 1.1 km s −1 Mpc −1 when including SH0ES Cepheid distances, and w a = − 0.65 − 0.32 + 0.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H 0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model. 
    more » « less

    Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects of ‘contamination’ from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such ‘non-Ia’ contamination in the Dark Energy Survey (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7–99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC (‘BEAMS with Bias Correction’), we produce a redshift-binned Hubble diagram marginalized over contamination and corrected for selection effects, and use it to constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian ΩM prior of 0.311 ± 0.010, we show that biases on w are <0.008 when using SuperNNova, with systematic uncertainties associated with contamination around 10 per cent of the statistical uncertainty on w for the DES-SN sample. An alternative approach of discarding contaminants using outlier rejection techniques (e.g. Chauvenet’s criterion) in place of SuperNNova leads to biases on w that are larger but still modest (0.015–0.03). Finally, we measure biases due to contamination on w0 and wa (assuming a flat universe), and find these to be <0.009 in w0 and <0.108 in wa, 5 to 10 times smaller than the statistical uncertainties for the DES-SN sample.

    more » « less

    Gravitational waves (GWs) provide a new avenue to test Einstein’s General Relativity (GR) using the ongoing and upcoming GW detectors by measuring the redshift evolution of the effective Planck mass proposed by several modified theories of gravity. We propose a model-independent, data-driven approach to measure any deviation from GR in the GW propagation effect by combining multimessenger observations of GW sources accompanied by EM counterparts, commonly known as bright sirens [Binary Neutron Star (BNS) and Neutron Star Black Hole systems (NSBH)]. We show that by combining the GW luminosity distance measurements from bright sirens with the Baryon Acoustic Oscillation (BAO) measurements derived from galaxy clustering, and the sound horizon measurements from the Cosmic Microwave Background (CMB), we can make a data-driven reconstruction of deviation of the variation of the effective Planck mass (jointly with the Hubble constant) as a function of cosmic redshift. Using this technique, we achieve a precise measurement of GR with redshift (z) with a precision of approximately 7.9 per cent for BNSs at redshift z = 0.075 and 10 per cent for NSBHs at redshift z = 0.225 with 5 yr of observation from LIGO-Virgo-KAGRA network of detectors. Employing Cosmic Explorer and Einstein Telescope for just 1 yr yields the best precision of about 1.62 per cent for BNSs and 2 per cent for NSBHs at redshift z = 0.5 on the evolution of the frictional term, and a similar precision up to z = 1. This measurement can discover potential deviation from any kind of model that impacts GW propagation with ongoing and upcoming observations.

    more » « less
  5. Abstract We present a measurement of the Hubble constant (H0) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analyzed blindly with respect to the cosmological parameters. In a flat ΛCDM cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}~\mathrm{km~s^{-1}~Mpc^{-1}}$, a $2.4{{\ \rm per\ cent}}$ precision measurement, in agreement with local measurements of H0 from type Ia supernovae calibrated by the distance ladder, but in 3.1σ tension with Planck observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in 5.3σ tension with Planck CMB determinations of H0 in flat ΛCDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat ΛCDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from Planck, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with Planck. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our H0 inference to cosmological model assumptions. For six different cosmological models, our combined inference on H0 ranges from ∼73–78 km s−1 Mpc−1, which is consistent with the local distance ladder constraints. 
    more » « less