skip to main content


Title: Excited Q-balls
Abstract

Complex scalars inU(1)-symmetric potentials can form stable Q-balls, non-topological solitons that correspond to spherical bound-state solutions. If theU(1) charge of the Q-ball is large enough, it can support a tower of unstable radial excitations with increasing energy. Previous analyses of these radial excitations were confined to fixed parameters, leading to excited states with different chargesQ. In this work, we provide the first characterization of the radial excitations of solitons for fixed charge, providing the physical spectrum for such objects. We also show how to approximately describe these excited states analytically and predict their global properties such as radius, energy, and charge. This enables a complete characterization of the radial spectrum. We also comment on the decay channels of these excited states.

 
more » « less
Award ID(s):
1915005
NSF-PAR ID:
10370675
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal C
Volume:
82
Issue:
9
ISSN:
1434-6052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    We employ semiclassical quantization to calculate spectrum of quantum KdV charges in the limit of large central chargec. Classically, KdV chargesQ2n−1generate completely integrable dynamics on the co-adjoint orbit of the Virasoro algebra. They can be expressed in terms of action variablesIk, e.g. as a power series expansion. Quantum-mechanically this series becomes the expansion in 1/c, while action variables become integer-valued quantum numbersni. Crucially, classical expression, which is homogeneous inIk, acquires quantum corrections that include terms of subleading powers innk. At first two non-trivial orders in 1/cexpansion these “quantum” terms can be fixed from the analytic form ofQ2n−1acting on the primary states. In this way we find explicit expression for the spectrum ofQ2n−1up to first three orders in 1/cexpansion. We apply this result to study thermal expectation values ofQ2n−1and free energy of the KdV Generalized Gibbs Ensemble.

     
    more » « less
  2. Abstract

    We consider the focusing energy-critical quintic nonlinear wave equation in 3D Euclidean space. It is known that this equation admits a one-parameter family of radial stationary solutions, called solitons, which can be viewed as a curve in $ \dot H^s_x({{\mathbb{R}}}^3) \times H^{s-1}_x({{\mathbb{R}}}^3)$, for any $s> 1/2$. By randomizing radial initial data in $ \dot H^s_x({{\mathbb{R}}}^3) \times H^{s-1}_x({{\mathbb{R}}}^3)$ for $s> 5/6$, which also satisfy a certain weighted Sobolev condition, we produce with high probability a family of radial perturbations of the soliton that give rise to global forward-in-time solutions of the focusing nonlinear wave equation that scatter after subtracting a dynamically modulated soliton. Our proof relies on a new randomization procedure using distorted Fourier projections associated to the linearized operator around a fixed soliton. To our knowledge, this is the 1st long-time random data existence result for a focusing wave or dispersive equation on Euclidean space outside the small data regime.

     
    more » « less
  3. Abstract

    Confinement of topological excitations into particle-like states - typically associated with theories of elementary particles - are known to occur in condensed matter systems, arising as domain-wall confinement in quantum spin chains. However, investigation of confinement in the condensed matter setting has rarely ventured beyond lattice spin systems. Here we analyze the confinement of sine-Gordon solitons into mesonic bound states in a perturbed quantum sine-Gordon model. The latter describes the scaling limit of a one-dimensional, quantum electronic circuit (QEC) array, constructed using experimentally-demonstrated QEC elements. The scaling limit is reached faster for the QEC array compared to spin chains, allowing investigation of the strong-coupling regime of this model. We compute the string tension of confinement of sine-Gordon solitons and the changes in the low-lying energy spectrum. These results, obtained using the density matrix renormalization group method, could be verified in a quench experiment using state-of-the-art QEC technologies.

     
    more » « less
  4. Abstract

    Methods to probe and understand the dynamic response of materials following impulsive excitation are important for many fields, from materials and energy sciences to chemical and neuroscience. To design more efficient nano, energy, and quantum devices, new methods are needed to uncover the dominant excitations and reaction pathways. In this work, we implement a newly-developed superlet transform—a super-resolution time-frequency analytical method—to analyze and extract phonon dynamics in a laser-excited two-dimensional (2D) quantum material. This quasi-2D system, 1T-TaSe2, supports both equilibrium and metastable light-induced charge density wave (CDW) phases mediated by strongly coupled phonons. We compare the effectiveness of the superlet transform to standard time-frequency techniques. We find that the superlet transform is superior in both time and frequency resolution, and use it to observe and validate novel physics. In particular, we show fluence-dependent changes in the coupled dynamics of three phonon modes that are similar in frequency, including the CDW amplitude mode, that clearly demonstrate a change in the dominant charge-phonon couplings. More interestingly, the frequencies of the three phonon modes, including the strongly-coupled CDW amplitude mode, remain time- and fluence-independent, which is unusual compared to previously investigated materials. Our study opens a new avenue for capturing the coherent evolution and couplings of strongly-coupled materials and quantum systems.

     
    more » « less
  5. ABSTRACT

    The emission process of Fast Radio Bursts (FRBs) remains unknown. We investigate whether the synchrotron maser emission from relativistic shocks in a magnetar wind can explain the observed FRB properties. We perform particle-in-cell (PIC) simulations of perpendicular shocks in cold pair plasmas, checking our results for consistency among three PIC codes. We confirm that a linearly polarized X-mode wave is self-consistently generated by the shock and propagates back upstream as a precursor wave. We find that at magnetizations σ ≳ 1 (i.e. ratio of Poynting flux to particle energy flux of the pre-shock flow) the shock converts a fraction $f_\xi ^{\prime } \approx 7 \times 10^{-4}/\sigma ^2$ of the total incoming energy into the precursor wave, as measured in the shock frame. The wave spectrum is narrow-band (fractional width ≲1−3), with apparent but not dominant line-like features as many resonances concurrently contribute. The peak frequency in the pre-shock (observer) frame is $\omega ^{\prime \prime }_{\rm peak} \approx 3 \gamma _{\rm s | u} \omega _{\rm p}$, where γs|u is the shock Lorentz factor in the upstream frame and ωp the plasma frequency. At σ ≳ 1, where our estimated $\omega ^{\prime \prime }_{\rm peak}$ differs from previous works, the shock structure presents two solitons separated by a cavity, and the peak frequency corresponds to an eigenmode of the cavity. Our results provide physically grounded inputs for FRB emission models within the magnetar scenario.

     
    more » « less