A bstract Non-topological solitons such as Q-balls and Q-shells have been studied for scalar fields invariant under global and gauged U(1) symmetries. We generalize this frame-work to include a Proca mass for the gauge boson, which can arise either from spontaneous symmetry breaking or via the Stückelberg mechanism. A heavy (light) gauge boson leads to solitons reminiscent of the global (gauged) case, but for intermediate values these Proca solitons exhibit completely novel features such as disconnected regions of viable parameter space and Q-shells with unbounded radius. We provide numerical solutions and excellent analytic approximations for both Proca Q-balls and Q-shells. These allow us to not only demonstrate the novel features numerically, but also understand and predict their origin analytically.
more »
« less
Slowly rotating Q-balls
Abstract Q-balls are non-topological solitons arising in scalar field theories. Solutions for rotating Q-balls (and the related boson stars) have been shown to exist when the angular momentum is equal to an integer multiple of the Q-ball chargeQ. Here we consider the possibility of classically long-lived metastable rotating Q-balls with small angular momentum, even for large charge, for all scalar theories that support non-rotating Q-balls. This is relevant for rotating extensions of Q-balls and related solitons such as boson stars as it impacts their cosmological phenomenology. arXiv:2302.11589
more »
« less
- PAR ID:
- 10499325
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 84
- Issue:
- 4
- ISSN:
- 1434-6052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Complex scalars inU(1)-symmetric potentials can form stable Q-balls, non-topological solitons that correspond to spherical bound-state solutions. If theU(1) charge of the Q-ball is large enough, it can support a tower of unstable radial excitations with increasing energy. Previous analyses of these radial excitations were confined to fixed parameters, leading to excited states with different chargesQ. In this work, we provide the first characterization of the radial excitations of solitons for fixed charge, providing the physical spectrum for such objects. We also show how to approximately describe these excited states analytically and predict their global properties such as radius, energy, and charge. This enables a complete characterization of the radial spectrum. We also comment on the decay channels of these excited states.more » « less
-
Abstract Non-topological solitons are localized classical field configurations stabilized by a Noether charge. Friedberg, Lee, and Sirlin proposed a simple renormalizable soliton model in their seminal 1976 paper, consisting of a complex scalar field that carries the Noether charge and a real-scalar mediator. We revisit this model, point out commonalities and differences withQ-ball solitons, and provide analytic approximations to the underlying differential equations.more » « less
-
Context.Many classical Be stars acquire their very rapid rotation by mass- and angular-momentum transfer in massive binaries, marking the first phase of the evolutionary chain. Later-stage products, such as Be+subdwarf- and Be+neutron-star binaries (Be X-ray binaries), are also well known, although the search for definitive proof of Be+white dwarf companions is ongoing. Short-lived intermediate-phase objects, that is, binaries past the interaction stage but with a donor star that has not yet reached the end of its evolution or contraction, have only recently been discovered. Aims.The main hallmark of this kind of binary is a system of absorption lines with low width, significant radial-velocity variations, and peculiar relative line strengths. Data archives and the literature can be searched for additional candidates exhibiting this pattern, and follow-up observations can be obtained in order to increase the number of these systems with quantitatively known orbits, providing a basis for an initial statistical investigation and to develop observational strategies for abundance analyses. Methods.We identified 13 candidates at various confidence levels. To verify their nature, we derived orbital elements from new high-quality spectra and interferometric observations where possible. We also performed qualitative analyses of other basic parameters, and preliminarily evaluated indicators of advanced stages of nucleosynthesis. Results.Adding to the two known systems identified as classical Be star+pre-subdwarf binaries (LB-1 andHR 6819), we confirm two more (V742 Cas,HD 44637) with interferometry, with V742 Cas setting a new record for the smallest visually observed angular semi-major axis, ata = 0.663 mas. Two further systems (V447 Sct,V1362 Cyg) are not resolved interferometrically, but other evidence puts them at the same confidence level as LB-1.V2174 Cygis a candidate with very high confidence, but was not observed interferometrically. The remaining systems are either candidates with varying levels of confidence –mainly due to the lack of available spectroscopic or interferometric observations for comparison with the others and orbit determination– or could be rejected as candidates with the followup observations. Conclusions.Of a mostly magnitude-complete sample of 328 Be stars, 0.5–1% are found to have recently completed the mass overflow that led to their formation. Another 5% are systems with a compact subdwarf companion –that is, they are further evolved after a previous overflow– and a further 2% possibly harbor white dwarfs. All these systems are early B subtypes, but if the original sample is restricted to early subtypes (136 objects), these percentages increase by a factor of about 2.5, while dropping to zero for the mid and late subtypes (together 204 objects). This strongly suggests that early-type versus mid- and late-type Be stars follow differently weighted channels to acquire their rapid rotation, namely binary interaction versus evolutionary spin up.more » « less
-
Abstract General relativistic magnetohydrodynamics (GRMHD) simulations are an indispensable tool in studying accretion onto compact objects. The Event Horizon Telescope (EHT) frequently uses libraries of ideal GRMHD simulations to interpret polarimetric, event-horizon-scale observations of supermassive black holes at the centers of galaxies. In this work, we present a library of 10 nonradiative, ideal GRMHD simulations that were utilized by the EHT Collaboration in their analysis of Sagittarius A*. The parameter survey explores both low (SANE) and high (MAD) magnetization states across five black hole spinsa* = −15/16, −1/2, 0, +1/2, +15/16 where each simulation was run out to 30,000GM/c−3. We find the angular momentum and energy flux in SANE simulations closely matches the thin-disk value, with minor deviations in prograde models due to fluid forces. This leads to spin equilibrium arounda* ∼ 0.94, consistent with previous studies. We study the flow of conserved quantities in our simulations and find mass, angular momentum, and energy transport in SANE accretion flows to be primarily inward and fluid dominated. MAD models produce powerful jets with outflow efficiency >1 fora* = + 0.94, leading to black hole spin-down in prograde cases. We observe outward directed energy and angular momentum fluxes on the horizon, as expected for the Blandford–Znajek mechanism. MAD accretion flows are sub-Keplerian and exhibit greater variability than their SANE counterpart. They are also hotter than SANE disks withinr ≲ 10GM/c−2. This study is accompanied by a public release of simulation data athttp://thz.astro.illinois.edu/.more » « less