skip to main content


Title: Can machine learning reveal precursors of reversals of the geomagnetic axial dipole field?
SUMMARY

It is well known that the axial dipole part of Earth’s magnetic field reverses polarity, so that the magnetic North Pole becomes the South Pole and vice versa. The timing of reversals is well documented for the past 160 Myr, but the conditions that lead to a reversal are still not well understood. It is not known if there are reliable ‘precursors’ of reversals (events that indicate that a reversal is upcoming) or what they might be. We investigate if machine learning (ML) techniques can reliably identify precursors of reversals based on time-series of the axial magnetic dipole field. The basic idea is to train a classifier using segments of time-series of the axial magnetic dipole. This training step requires modification of standard ML techniques to account for the fact that we are interested in rare events—a reversal is unusual, while a non-reversing field is the norm. Without our tweak, the ML classifiers lead to useless predictions. Perhaps even more importantly, the usable observational record is limited to 0–2 Ma and contains only five reversals, necessitating that we determine if the data are even sufficient to reliably train and validate an ML algorithm. To answer these questions we use several ML classifiers (linear/non-linear support vector machines and long short-term memory networks), invoke a hierarchy of numerical models (from simplified models to 3-D geodynamo simulations), and two palaeomagnetic reconstructions (PADM2M and Sint-2000). The performance of the ML classifiers varies across the models and the observational record and we provide evidence that this is not an artefact of the numerics, but rather reflects how ‘predictable’ a model or observational record is. Studying models of Earth’s magnetic field via ML classifiers thus can help with identifying shortcomings or advantages of the various models. For Earth’s magnetic field, we conclude that the ability of ML to identify precursors of reversals is limited, largely due to the small amount and low frequency resolution of data, which makes training and subsequent validation nearly impossible. Put simply: the ML techniques we tried are not currently capable of reliably identifying an axial dipole moment (ADM) precursor for geomagnetic reversals. This does not necessarily imply that such a precursor does not exist, and improvements in temporal resolution and length of ADM records may well offer better prospects in the future.

 
more » « less
Award ID(s):
1953778
NSF-PAR ID:
10370738
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
231
Issue:
1
ISSN:
0956-540X
Page Range / eLocation ID:
p. 520-535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Observations of relative paleointensity reveal several forms of asymmetry in the time dependence of the virtual axial dipole moment (VADM). Slow decline of the VADM into a reversal is often followed by a more rapid rise back to a quasi‐steady state. Asymmetry is also observed in trends of VADM during times of stable polarity. Trends of increasing VADM over time intervals of a few 10s of kyr are more intense and less frequent than decreasing trends. We examine the origin of this behavior using stochastic models. The usual (Langevin) model can account for asymmetries during reversals, but it cannot reproduce the observed asymmetry in trends during stable polarity. Better agreement is achieved with a different class of stochastic models in which the dipole is generated by a series of impulsive events in time. The timing of each event occurs randomly as a Poisson process and the amplitude is also randomly distributed. Predicted trends replicate the observed asymmetry when the generation events are large and the recurrence time is long (typically longer than 3 kyr). Large and infrequent generation events argue against dipole generation by small‐scale turbulent flow. Instead, the observations favor a mechanism that relies on expulsion of poloidal magnetic field from the core.

     
    more » « less
  2. SUMMARY Earth’s internal magnetic field is dominated by the contribution of the axial dipole whose temporal variations are wide ranging and reflect characteristic timescales associated with geomagnetic reversals and large scale palaeosecular variation, ranging down to decadal and subannual field changes inferred from direct observations. We present a new empirical power spectrum for the axial dipole moment based on composite magnetic records of temporal variations in the axial dipole field that span the frequency range 0.1 to 5 × 105  Myr–1 (periods from 10 million to 2 yr). The new spectrum is used to build a stochastic representation for these time variations, based on an order 3 autoregressive (AR) process and placed in the context of earlier stochastic modelling studies. The AR parameter estimates depend on the frequency of transitions in the spectral regime and may be influenced by Ohmic diffusion, advection and torsional oscillations in Earth’s core. In several frequency ranges across the interval 200–5000 Myr–1(5000 to 200 yr periods) the empirical power spectrum lies above the AR3 model and may be influenced by Magneto–Coriolis (MC) waves in Earth’s core. The spectral shape and parameter estimates provide a potentially useful guide for developing assessments of whether numerical dynamo simulations meet criteria for being considered Earth like. 
    more » « less
  3. The diminishing strength of the Earth’s magnetic dipole over recent millennia is accompanied by the increasing prominence of the geomagnetic South Atlantic Anomaly (SAA), which spreads over the South Atlantic Ocean and South America. The longevity of this feature at millennial timescales is elusive because of the scarcity of continuous geomagnetic data for the region. Here, we report a unique geomagnetic record for the last ∼1500 y that combines the data of two well-dated stalagmites from Pau d’Alho cave, located close to the present-day minimum of the anomaly in central South America. Magnetic directions and relative paleointensity data for both stalagmites are generally consistent and agree with historical data from the last 500 y. Before 1500 CE, the data adhere to the geomagnetic model ARCH3K.1, which is derived solely from archeomagnetic data. Our observations indicate rapid directional variations (>0.1°/y) from approximately 860 to 960 CE and approximately 1450 to 1750 CE. A similar pattern of rapid directional variation observed from South Africa precedes the South American record by 224 ± 50 y. These results confirm that fast geomagnetic field variations linked to the SAA are a recurrent feature in the region. We develop synthetic models of reversed magnetic flux patches at the core–mantle boundary and calculate their expression at the Earth’s surface. The models that qualitatively resemble the observational data involve westward (and southward) migration of midlatitude patches, combined with their expansion and intensification. 
    more » « less
  4. The objectives of International Ocean Discovery Program (IODP) Expedition 398, Hellenic Arc Volcanic Field (11 December 2022 to 10 February 2023), were to study the volcanic record of the central Hellenic island arc; document the links and feedbacks between volcanism/magmatism, crustal tectonics, and sea level; investigate the processes and products of shallow submarine eruptions of silicic magma; and groundtruth the seismic stratigraphy of Santorini caldera. Reconstructing the subsidence history of the southern Aegean Sea and searching for deep life inside and outside of Santorini caldera were additional objectives. The expedition drilled 10 primary and alternate sites that were originally proposed, in addition to 2 extra sites that were requested during the expedition. Outside of Santorini caldera, drilling penetrated the thick basin fills of the crustal rift system hosting the Christiana-Santorini-Kolumbo volcanic field, identifying numerous pumice and ash layers, some known from on land and others hitherto unknown, pushing back the onset of volcanism in the area into the Early Pleistocene or even Pliocene. Significant events of mass wasting into the basins, accompanied by very high sedimentation rates, were also documented. These basin sites served to groundtruth the seismic stratigraphy of the basins and to open the way to unraveling relationships between volcanic activity and crustal rift pulses. Two sites of condensed sequences on the basin margins served to sample many volcanic layers within the detailed age-depth constraints provided mainly by biostratigraphy, as diagenetic effects complicated the magnetic reversal record significantly. Drilling penetrated the Alpine basement at three basin sites northeast of Santorini, whereas in the Christiana Basin to the southwest it penetrated a thick sequence of Messinian evaporites. Drilling inside Santorini caldera penetrated to ~120 meters below seafloor (mbsf), less than planned due to hole instability issues but deep enough to groundtruth the seismic stratigraphy and to sample the different layers. One intracaldera hole yielded a detailed tephra record of the history of the Kameni Islands, as well as possible evidence for deep bacterial colonies within the caldera. Despite variable recovery in the unstable pumice and ash deposits, the expedition was a significant success that may address almost all the science objectives once the laboratory work has been done. A dense program of preexpedition and shipboard outreach during the expedition gave rise to 59 live ship-to-shore tours, reaching 6,400 people in 7 countries including many school children. A total of 51 journalists were contacted and 9 stories were written about the expedition, with a readership of almost 200,000 people. While in Santorini caldera, the ship hosted 12 documentarians and journalists, the future products of whom should include a 1.5 h documentary and a four-part TV series about Expedition 398. The expedition social media pages were active. Prior to the expedition, an exhibition, “In Search of Earth’s Secrets,” ran for a week on Santorini and was visited by more than 1,800 school children. 
    more » « less
  5. We consider a stochastic differential equation model for Earth's axial magnetic dipole field. The model's parameters are estimated using diverse and independent data sources that had previously been treated separately. The result is a numerical model that is informed by the full paleomagnetic record on kyr to Myr time scales and whose outputs match data of Earth's dipole in a precisely defined feature-based sense. Specifically, we compute model parameters and associated uncertainties that lead to model outputs that match spectral data of Earth's axial magnetic dipole field but our approach also reveals difficulties with simultaneously matching spectral data and reversal rates. This could be due to model deficiencies or inaccuracies in the limited amount of data. More generally, the approach we describe can be seen as an example of an effective strategy for combining diverse data sets that is particularly useful when the amount of data is limited. 
    more » « less